Jump to content

January 2084 lunar eclipse

From Wikipedia, the free encyclopedia

January 2084 lunar eclipse
Total eclipse
The Moon's hourly motion shown right to left
DateJanuary 22, 2084
Gamma−0.3610
Magnitude1.1531
Saros cycle135 (27 of 71)
Totality60 minutes, 32 seconds
Partiality216 minutes, 16 seconds
Penumbral362 minutes, 0 seconds
Contacts (UTC)
P120:09:13
U121:22:08
U222:39:59
Greatest23:10:14
U323:40:31
U40:58:23
P42:11:13
July 2084 →

A total lunar eclipse will occur at the Moon’s descending node of orbit on Saturday, January 22, 2084,[1] with an umbral magnitude of 1.1531. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring about 4 days after apogee (on January 18, 2084, at 23:50 UTC), the Moon's apparent diameter will be smaller.[2]

This lunar eclipse will be the third of an almost tetrad, with the others being on February 2, 2083 (total); July 29, 2083 (total); and July 17, 2084 (partial).

Visibility

[edit]

The eclipse will be completely visible over Africa, Europe, and west and central Asia, seen rising over North and South America and setting over south and east Asia and western Australia.[3]

Eclipse details

[edit]

Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]

January 22, 2084 Lunar Eclipse Parameters
Parameter Value
Penumbral Magnitude 2.24251
Umbral Magnitude 1.15312
Gamma −0.36098
Sun Right Ascension 20h20m36.4s
Sun Declination -19°30'37.0"
Sun Semi-Diameter 16'15.1"
Sun Equatorial Horizontal Parallax 08.9"
Moon Right Ascension 08h20m09.1s
Moon Declination +19°11'55.7"
Moon Semi-Diameter 14'55.1"
Moon Equatorial Horizontal Parallax 0°54'45.0"
ΔT 111.5 s

Eclipse season

[edit]

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January 2084
January 7
Ascending node (new moon)
January 22
Descending node (full moon)
Partial solar eclipse
Solar Saros 123
Total lunar eclipse
Lunar Saros 135
[edit]

Eclipses in 2084

[edit]

Metonic

[edit]

Tzolkinex

[edit]

Half-Saros

[edit]

Tritos

[edit]

Lunar Saros 135

[edit]

Inex

[edit]

Triad

[edit]

Lunar eclipses of 2082–2085

[edit]

This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]

The penumbral lunar eclipses on June 8, 2085 and December 1, 2085 occur in the next lunar year eclipse set.

Lunar eclipse series sets from 2082 to 2085
Descending node   Ascending node
Saros Date
Viewing
Type
Chart
Gamma Saros Date
Viewing
Type
Chart
Gamma
115 2082 Feb 13
Partial
1.0101 120 2082 Aug 08
Penumbral
−1.0203
125 2083 Feb 02
Total
0.3463 130 2083 Jul 29
Total
−0.2143
135 2084 Jan 22
Total
−0.3610 140 2084 Jul 17
Partial
0.5312
145 2085 Jan 10
Penumbral
−1.0453 150 2085 Jul 07
Penumbral
1.2694

Saros 135

[edit]

This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a penumbral lunar eclipse on April 13, 1615. It contains partial eclipses from July 20, 1777 through October 28, 1939; total eclipses from November 7, 1957 through July 6, 2354; and a second set of partial eclipses from July 16, 2372 through September 19, 2480. The series ends at member 71 as a penumbral eclipse on May 18, 2877.

The longest duration of totality will be produced by member 37 at 106 minutes, 13 seconds on May 12, 2264. All eclipses in this series occur at the Moon’s descending node of orbit.[6]

Greatest First
The greatest eclipse of the series will occur on 2264 May 12, lasting 106 minutes, 13 seconds.[7] Penumbral Partial Total Central
1615 Apr 13
1777 Jul 20
1957 Nov 07
2174 Mar 18
Last
Central Total Partial Penumbral
2318 Jun 14
2354 Jul 06
2480 Sep 19
2877 May 18

Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

Tritos series

[edit]

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1811 Mar 10
(Saros 110)
1822 Feb 06
(Saros 111)
1833 Jan 06
(Saros 112)
1843 Dec 07
(Saros 113)
1854 Nov 04
(Saros 114)
1865 Oct 04
(Saros 115)
1876 Sep 03
(Saros 116)
1887 Aug 03
(Saros 117)
1898 Jul 03
(Saros 118)
1909 Jun 04
(Saros 119)
1920 May 03
(Saros 120)
1931 Apr 02
(Saros 121)
1942 Mar 03
(Saros 122)
1953 Jan 29
(Saros 123)
1963 Dec 30
(Saros 124)
1974 Nov 29
(Saros 125)
1985 Oct 28
(Saros 126)
1996 Sep 27
(Saros 127)
2007 Aug 28
(Saros 128)
2018 Jul 27
(Saros 129)
2029 Jun 26
(Saros 130)
2040 May 26
(Saros 131)
2051 Apr 26
(Saros 132)
2062 Mar 25
(Saros 133)
2073 Feb 22
(Saros 134)
2084 Jan 22
(Saros 135)
2094 Dec 21
(Saros 136)
2105 Nov 21
(Saros 137)
2116 Oct 21
(Saros 138)
2127 Sep 20
(Saros 139)
2138 Aug 20
(Saros 140)
2149 Jul 20
(Saros 141)
2160 Jun 18
(Saros 142)
2171 May 19
(Saros 143)
2182 Apr 18
(Saros 144)
2193 Mar 17
(Saros 145)

Inex series

[edit]

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
1823 Jul 23
(Saros 126)
1852 Jul 01
(Saros 127)
1881 Jun 12
(Saros 128)
1910 May 24
(Saros 129)
1939 May 03
(Saros 130)
1968 Apr 13
(Saros 131)
1997 Mar 24
(Saros 132)
2026 Mar 03
(Saros 133)
2055 Feb 11
(Saros 134)
2084 Jan 22
(Saros 135)
2113 Jan 02
(Saros 136)
2141 Dec 13
(Saros 137)
2170 Nov 23
(Saros 138)
2199 Nov 02
(Saros 139)

Half-Saros cycle

[edit]

A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 142.

January 16, 2075 January 27, 2093

See also

[edit]

Notes

[edit]
  1. ^ "January 22–23, 2084 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 14 December 2024.
  2. ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 14 December 2024.
  3. ^ "Total Lunar Eclipse of 2084 Jan 22" (PDF). NASA. Retrieved 14 December 2024.
  4. ^ "Total Lunar Eclipse of 2084 Jan 22". EclipseWise.com. Retrieved 14 December 2024.
  5. ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. ^ "NASA - Catalog of Lunar Eclipses of Saros 135". eclipse.gsfc.nasa.gov.
  7. ^ Listing of Eclipses of series 135
  8. ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
[edit]