Jump to content

Very small embryonic-like stem cells

From Wikipedia, the free encyclopedia

Very small embryonic-like stem cells (VSELs) are a term applied to a population of adult stem cells that share several characteristics with embryonic stem cells. Initially described in the early 2000s, VSELs are considered pluripotent or multipotent cells residing in adult tissues, including bone marrow, blood, cord blood, and other organs. They are characterized by their small size, expression of markers typically associated with stemness, and their reported potential to differentiate into various cell types. Despite the history and controversy, VSELs continue to be investigated as a potential target in regenerative medicine research.

History and controversy

[edit]

VSELs were first proposed by researchers led by Prof. Mariusz Ratajczak at the University of Louisville in 2006.[1] Their discovery was based on identifying a rare population of small, round cells expressing pluripotency-associated markers such as CXCR4, Oct-4, and Sox-2[2] in cord blood and adult bone marrow. These cells were hypothesized to represent a population of dormant, primitive stem cells that could be activated under certain physiological or pathological conditions. They have been isolated based on CD34 or CD133 positive cells in humans.[3][4][5]

Since their initial description, VSELs have been investigated in multiple human tissues, including umbilical cord blood and peripheral blood. Research groups worldwide have studied their potential roles in tissue regeneration, cardiovascular repair, and hematopoiesis. However, the sorting strategy used to isolate such very small cells has been a major source of controversy.[6] Initial criticisms suggested that instead of isolating VSELs, investigators may have inadvertently sorted extracellular vesicles[7] or erythroblasts.[8] These criticisms were addressed in two response papers that argued sorting errors were responsible for misidentifications.[9][10]

Despite the controversy, over 50 independent scientific groups have reported results confirming the presence of VSELs, without links to the original team[4][5][11][12][13][14][15][16][17][18]. Nearly two decades after the original debate, refined protocols have been developed to reliably enrich VSELs in cord blood, peripheral blood, and bone marrow.[19][20][21][10][22]

Characterization

[edit]

VSELs are reported to possess the ability to differentiate both in vitro and in vivo into tissue-specific stem cells representing all three germ layers. They are distinguished from other stem cell populations by their unique phenotype and distinct molecular characteristics that support their potential for pluripotency and regeneration.

  • Size and morphology: VSELs are extremely small, round, typically measuring less than 7 micrometers in diameter—smaller than hematopoietic stem cells (HSCs)—which contributes to their technical difficulty in isolation and analysis.
  • Nuclear organization: Unlike mature stem cells, VSELs have a high nucleus-to-cytoplasm ratio.
  • Marker expression: They express markers commonly associated with pluripotency, including Oct-4, Sox-2, and SSEA-4, and exhibit epigenetic modifications indicative of retained developmental potential.
  • Quiescence and activation: VSELs remain dormant in adult tissues but may become activated by injury or stress, potentially contributing to tissue repair.

Function

[edit]

VSELs and hematopoietic stem cells (HSCs)

[edit]

Studies have shown that VSELs reside in bone marrow in a quiescent state[23][24] and can be mobilized into peripheral blood under stress conditions such as tissue injury, hypoxia, or inflammation. Experimental models suggest that VSELs may contribute to blood cell regeneration by differentiating into hematopoietic cells and assisting recovery following bone marrow injury or transplantation. Janina Ratajczak et al. demonstrated that adult murine bone marrow-derived VSELs can differentiate into hematopoietic lineages when co-cultured with OP9 stromal cells, supporting their potential role in blood cell development.[25] Bulk RNA-Seq analysis and scRNA-seq enabled a comprehensive comparison of the transcriptomic profiles between HSCs and VSELs, providing valuable insights into their molecular differences.[26][27]

VSEL, lung diseases, and epithelial differentiation

[edit]

In humans, VSELs have been quantified in peripheral blood by flow cytometry and proposed as biomarkers of hypoxic lung disease and pulmonary hypertension, suggesting a role in disease monitoring and pathophysiology.[28] Krause’s group provided early evidence that non-hematopoietic VSELs, rather than bone marrow-derived cells (BMDCs), differentiate into lung epithelial cells.[12] More recently, studies have shown that VSELs can differentiate into bronchioalveolar stem cells (BASCs) and alveolar type 2 (AT2) cells, indicating potential for cell therapy development in lung injury.[29]

VSELs, cardiovascular Diseases, and endothelial differentiation.

[edit]

VSELs have been reported to mobilize into peripheral blood during stress conditions such as myocardial infarction[30] and critical limb ischemia (CLI).[5] Research from David Smadja’s group has shown that bone marrow-derived VSELs from CLI patients, when cultured for two weeks in angiogenic media, demonstrated beneficial effects in preclinical mouse models of limb ischemia.[5] These cultured VSELs were also able to differentiate into endothelial and perivascular cells in matrigel implant models.[5][31]

Dominguez et al. have explored the differentiation of VSELs into endothelial colony-forming cells (ECFCs), a vasculogenic subtype of endothelial progenitor cells.[32] Additional studies have supported the endothelial differentiation capacity of VSELs.[4][14][17] The team led by Henon has specifically investigated the role of VSELs in cell therapy after myocardial infarction, reporting that CD34+ cell products (Protheracytes) are enriched in VSELs and show promising regenerative properties.[33][34] Notably, the CellProthera expansion protocol for CD34+ cells reportedly increases the VSEL proportion to approximately 5% in the final cell product administered to patients.[35]

References

[edit]
  1. ^ Kucia, M.; Reca, R.; Campbell, F. R.; Zuba-Surma, E.; Majka, M.; Ratajczak, J.; Ratajczak, M. Z. (May 2006). "A population of very small embryonic-like (VSEL) CXCR4(+)SSEA-1(+)Oct-4+ stem cells identified in adult bone marrow". Leukemia. 20 (5): 857–869. doi:10.1038/sj.leu.2404171. ISSN 0887-6924. PMID 16498386.
  2. ^ Kucia, M; Halasa, M; Wysoczynski, M; Baskiewicz-Masiuk, M; Moldenhawer, S; Zuba-Surma, E; Czajka, R; Wojakowski, W; Machalinski, B; Ratajczak, M Z (2006-11-30). "Morphological and molecular characterization of novel population of CXCR4+ SSEA-4+ Oct-4+ very small embryonic-like cells purified from human cord blood – preliminary report". Leukemia. 21 (2): 297–303. doi:10.1038/sj.leu.2404470. ISSN 0887-6924. PMID 17136117.
  3. ^ Ratajczak, Mariusz Z.; Ratajczak, Janina; Kucia, Magda (2019-01-18). "Very Small Embryonic-Like Stem Cells (VSELs)". Circulation Research. 124 (2): 208–210. doi:10.1161/circresaha.118.314287. ISSN 0009-7330. PMC 6461217. PMID 30653438.
  4. ^ a b c Lahlil, Rachid; Scrofani, Maurice; Barbet, Romain; Tancredi, Céline; Aries, Anne; Hénon, Philippe (2018-05-08). "VSELs Maintain their Pluripotency and Competence to Differentiate after Enhanced Ex Vivo Expansion". Stem Cell Reviews and Reports. 14 (4): 510–524. doi:10.1007/s12015-018-9821-1. ISSN 1550-8943. PMC 6013546. PMID 29736843.
  5. ^ a b c d e Guerin, Coralie L.; Loyer, Xavier; Vilar, José; Cras, Audrey; Mirault, Tristan; Gaussem, Pascale; Silvestre, Jean-Sébastien; Smadja, David M. (September 2015). "Bone-marrow-derived very small embryonic-like stem cells in patients with critical leg ischaemia: evidence of vasculogenic potential". Thrombosis and Haemostasis. 113 (5): 1084–1094. doi:10.1160/th14-09-0748. ISSN 0340-6245. PMID 25608764.
  6. ^ Danova-Alt, Ralitza; Heider, Andreas; Egger, Dietmar; Cross, Michael; Alt, Rüdiger (2012-04-03). "Very Small Embryonic-Like Stem Cells Purified from Umbilical Cord Blood Lack Stem Cell Characteristics". PLOS ONE. 7 (4): e34899. Bibcode:2012PLoSO...734899D. doi:10.1371/journal.pone.0034899. ISSN 1932-6203. PMC 3318011. PMID 22509366.
  7. ^ Miyanishi, Masanori; Mori, Yasuo; Seita, Jun; Chen, James Y.; Karten, Seth; Chan, Charles K.F.; Nakauchi, Hiromitsu; Weissman, Irving L. (August 2013). "Do Pluripotent Stem Cells Exist in Adult Mice as Very Small Embryonic Stem Cells?". Stem Cell Reports. 1 (2): 198–208. doi:10.1016/j.stemcr.2013.07.001. ISSN 2213-6711. PMC 3757755. PMID 24052953.
  8. ^ Szade, Krzysztof; Bukowska-Strakova, Karolina; Nowak, Witold Norbert; Szade, Agata; Kachamakova-Trojanowska, Neli; Zukowska, Monika; Jozkowicz, Alicja; Dulak, Jozef (2013-05-17). "Murine Bone Marrow Lin−Sca-1+CD45− Very Small Embryonic-Like (VSEL) Cells Are Heterogeneous Population Lacking Oct-4A Expression". PLOS ONE. 8 (5): e63329. Bibcode:2013PLoSO...863329S. doi:10.1371/journal.pone.0063329. ISSN 1932-6203. PMC 3656957. PMID 23696815.
  9. ^ Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M (2013-09-10). "Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate". Leukemia. 28 (3): 473–484. doi:10.1038/leu.2013.255. ISSN 0887-6924. PMC 3948156. PMID 24018851.
  10. ^ a b Suszynska, Malwina; Zuba-Surma, Ewa K.; Maj, Magdalena; Mierzejewska, Kasia; Ratajczak, Janina; Kucia, Magda; Ratajczak, Mariusz Z. (April 2014). "The Proper Criteria for Identification and Sorting of Very Small Embryonic-Like Stem Cells, and Some Nomenclature Issues". Stem Cells and Development. 23 (7): 702–713. doi:10.1089/scd.2013.0472. ISSN 1547-3287. PMC 3967357. PMID 24299281.
  11. ^ Wu, Jin-Hong; Wang, Hai-Jie; Tan, Yu-Zhen; Li, Zhi-Hua (2012-05-20). "Characterization of Rat Very Small Embryonic-Like Stem Cells and Cardiac Repair After Cell Transplantation for Myocardial Infarction". Stem Cells and Development. 21 (8): 1367–1379. doi:10.1089/scd.2011.0280. ISSN 1547-3287. PMID 22032240.
  12. ^ a b Kassmer, Susannah H.; Jin, Huiyan; Zhang, Ping-Xia; Bruscia, Emanuela M.; Heydari, Kartoosh; Lee, Joo-Hyeon; Kim, Carla F.; Krause, Diane S. (2013-12-01). "Very Small Embryonic-Like Stem Cells from the Murine Bone Marrow Differentiate into Epithelial Cells of the Lung". Stem Cells. 31 (12): 2759–2766. doi:10.1002/stem.1413. ISSN 1066-5099. PMC 4536826. PMID 23681901.
  13. ^ Chang, Yu-Jen; Tien, Kuei-Erh; Wen, Cheng-Hao; Hsieh, Tzu-Bou; Hwang, Shiaw-Min (April 2014). "Recovery of CD45−/Lin−/SSEA-4+ very small embryonic-like stem cells by cord blood bank standard operating procedures". Cytotherapy. 16 (4): 560–565. doi:10.1016/j.jcyt.2013.10.009. ISSN 1465-3249. PMID 24364909.
  14. ^ a b Havens, Aaron M.; Sun, Hongli; Shiozawa, Yusuke; Jung, Younghun; Wang, Jingcheng; Mishra, Anjali; Jiang, Yajuan; O'Neill, David W.; Krebsbach, Paul H.; Rodgerson, Denis O.; Taichman, Russell S. (April 2014). "Human and Murine Very Small Embryonic-Like Cells Represent Multipotent Tissue Progenitors, In Vitro and In Vivo". Stem Cells and Development. 23 (7): 689–701. doi:10.1089/scd.2013.0362. ISSN 1547-3287. PMC 3967374. PMID 24372153.
  15. ^ Shaikh, A; Nagvenkar, P; Pethe, P; Hinduja, I; Bhartiya, D (2015-04-17). "Molecular and phenotypic characterization of CD133 and SSEA4 enriched very small embryonic-like stem cells in human cord blood". Leukemia. 29 (9): 1909–1917. doi:10.1038/leu.2015.100. ISSN 0887-6924. PMID 25882698.
  16. ^ Nakatsuka, Ryusuke; Iwaki, Ryuji; Matsuoka, Yoshikazu; Sumide, Keisuke; Kawamura, Hiroshi; Fujioka, Tatsuya; Sasaki, Yutaka; Uemura, Yasushi; Asano, Hiroaki; Kwon, A-Hon; Sonoda, Yoshiaki (January 2016). "Identification and Characterization of LineageCD45Sca-1+VSEL Phenotypic Cells Residing in Adult Mouse Bone Tissue". Stem Cells and Development. 25 (1): 27–42. doi:10.1089/scd.2015.0168. ISSN 1547-3287. PMID 26595762.
  17. ^ a b Zhang, Shaoheng; Zhao, Lan; Wang, Jiahong; Chen, Nannan; Yan, Jian; Pan, Xin (2017-01-12). "HIF-2α and Oct4 have synergistic effects on survival and myocardial repair of very small embryonic-like mesenchymal stem cells in infarcted hearts". Cell Death & Disease. 8 (1): e2548. doi:10.1038/cddis.2016.480. ISSN 2041-4889. PMC 5386383. PMID 28079892.
  18. ^ Monti, Manuela; Imberti, Barbara; Bianchi, Niccolò; Pezzotta, Anna; Morigi, Marina; Del Fante, Claudia; Redi, Carlo Alberto; Perotti, Cesare (September 2017). "A Novel Method for Isolation of Pluripotent Stem Cells from Human Umbilical Cord Blood". Stem Cells and Development. 26 (17): 1258–1269. doi:10.1089/scd.2017.0012. ISSN 1547-3287. PMID 28583028.
  19. ^ Zuba-Surma, Ewa K.; Klich, Iza; Greco, Nick; Laughlin, Mary J.; Ratajczak, Janina; Ratajczak, Mariusz Z. (2009-12-11). "Optimization of isolation and further characterization of umbilical cord blood-derived very small embryonic/ epiblast-like stem cells (VSELs)". European Journal of Haematology. 84 (1): 34–46. doi:10.1111/j.1600-0609.2009.01352.x. ISSN 0902-4441. PMID 19758351.
  20. ^ Zuba-Surma, Ewa K.; Ratajczak, Mariusz Z. (January 2010). "Overview of Very Small Embryonic-Like Stem Cells (VSELs) and Methodology of Their Identification and Isolation by Flow Cytometric Methods". Current Protocols in Cytometry. 51 (1): Unit9.29. doi:10.1002/0471142956.cy0929s51. ISSN 1934-9297. PMID 20069527.
  21. ^ Ratajczak, Mariusz Z.; Liu, Rui; Marlicz, Wojciech; Blogowski, Wojciech; Starzynska, Teresa; Wojakowski, Wojciech; Zuba-Surma, Ewa (2011), "Identification of Very Small Embryonic/Epiblast-Like Stem Cells (VSELs) Circulating in Peripheral Blood During Organ/Tissue Injuries", Recent Advances in Cytometry, Part B - Advances in Applications, Methods in Cell Biology, vol. 103, Elsevier, pp. 31–54, doi:10.1016/b978-0-12-385493-3.00003-6, ISBN 978-0-12-385493-3, PMID 21722799, retrieved 2025-03-23
  22. ^ Liu, Rui; Ratajczak, Mariusz Z. (2012), "Enumeration of Very Small Embryonic-Like Stem Cells in Peripheral Blood", Stem Cell Mobilization, Methods in Molecular Biology, vol. 904, Totowa, NJ: Humana Press, pp. 207–219, doi:10.1007/978-1-61779-943-3_17, ISBN 978-1-61779-942-6, PMID 22890934, retrieved 2025-03-23
  23. ^ Shin, D M; Zuba-Surma, E K; Wu, W; Ratajczak, J; Wysoczynski, M; Ratajczak, M Z; Kucia, M (2009-07-30). "Novel epigenetic mechanisms that control pluripotency and quiescence of adult bone marrow-derived Oct4+ very small embryonic-like stem cells". Leukemia. 23 (11): 2042–2051. doi:10.1038/leu.2009.153. ISSN 0887-6924. PMC 2783188. PMID 19641521.
  24. ^ Ratajczak, Mariusz Z.; Ratajczak, Janina; Suszynska, Malwina; Miller, Donald M.; Kucia, Magda; Shin, Dong-Myung (2017-01-06). "A Novel View of the Adult Stem Cell Compartment From the Perspective of a Quiescent Population of Very Small Embryonic-Like Stem Cells". Circulation Research. 120 (1): 166–178. doi:10.1161/circresaha.116.309362. ISSN 0009-7330. PMC 5221475. PMID 28057792.
  25. ^ Ratajczak, Janina; Wysoczynski, Marcin; Zuba-Surma, Ewa; Wan, Wu; Kucia, Magda; Yoder, Mervin C.; Ratajczak, Mariusz Z. (February 2011). "Adult murine bone marrow-derived very small embryonic-like stem cells differentiate into the hematopoietic lineage after coculture over OP9 stromal cells". Experimental Hematology. 39 (2): 225–237. doi:10.1016/j.exphem.2010.10.007. ISSN 0301-472X. PMC 3044339. PMID 21034791.
  26. ^ Jarczak, Justyna; Bujko, Kamila; Brzeźniakiewicz-Janus, Katarzyna; Ratajczak, Mariusz; Kucia, Magdalena (2025-01-09). "Next-generation sequencing protocol of hematopoietic stem cells (HSCs). Step-by-step overview and troubleshooting guide". PLOS ONE. 20 (1): e0313009. Bibcode:2025PLoSO..2013009J. doi:10.1371/journal.pone.0313009. ISSN 1932-6203. PMC 11717189. PMID 39787063.
  27. ^ Jarczak, Justyna; Bujko, Kamila; Ratajczak, Mariusz Z.; Kucia, Magdalena (2024-11-26). "scRNA-seq revealed transcriptional signatures of human umbilical cord primitive stem cells and their germ lineage origin regulated by imprinted genes". Scientific Reports. 14 (1): 29264. Bibcode:2024NatSR..1429264J. doi:10.1038/s41598-024-79810-4. ISSN 2045-2322. PMC 11589151. PMID 39587190.
  28. ^ Guerin, Coralie L.; Blandinières, Adeline; Planquette, Benjamin; Silvestre, Jean-Sébastien; Israel-Biet, Dominique; Sanchez, Olivier; Smadja, David M. (2017-03-11). "Very Small Embryonic-like Stem Cells Are Mobilized in Human Peripheral Blood during Hypoxemic COPD Exacerbations and Pulmonary Hypertension". Stem Cell Reviews and Reports. 13 (4): 561–566. doi:10.1007/s12015-017-9732-6. ISSN 1550-8943. PMID 28285391.
  29. ^ Ciechanowicz, Andrzej K.; Sielatycka, Katarzyna; Cymer, Monika; Skoda, Marta; Suszyńska, Malwina; Bujko, Kamila; Ratajczak, Mariusz Z.; Krause, Diane S.; Kucia, Magdalena (2021-06-22). "Bone Marrow-Derived VSELs Engraft as Lung Epithelial Progenitor Cells after Bleomycin-Induced Lung Injury". Cells. 10 (7): 1570. doi:10.3390/cells10071570. ISSN 2073-4409. PMC 8303224. PMID 34206516.
  30. ^ Wojakowski, Wojciech; Tendera, Michał; Kucia, Magda; Zuba-Surma, Ewa; Paczkowska, Edyta; Ciosek, Joanna; Hałasa, Maciej; Król, Marek; Kazmierski, Maciej; Buszman, Paweł; Ochała, Andrzej; Ratajczak, Janina; Machaliński, Bogusław; Ratajczak, Mariusz Z. (January 2009). "Mobilization of Bone Marrow-Derived Oct-4+ SSEA-4+ Very Small Embryonic-Like Stem Cells in Patients With Acute Myocardial Infarction". Journal of the American College of Cardiology. 53 (1): 1–9. doi:10.1016/j.jacc.2008.09.029. ISSN 0735-1097. PMC 5536894. PMID 19118716.
  31. ^ Saucourt, Claire; Vogt, Sandrine; Merlin, Amandine; Valat, Christophe; Criquet, Anthony; Harmand, Laurence; Birebent, Brigitte; Rouard, Hélène; Himmelspach, Christian; Jeandidier, Éric; Chartois-Leauté, Anne-Gaële; Derenne, Sophie; Koehl, Laurence; Salem, Joe-Elie; Hulot, Jean-Sébastien (2019-04-29). "Design and Validation of an Automated Process for the Expansion of Peripheral Blood-Derived CD34+ Cells for Clinical Use After Myocardial Infarction". Stem Cells Translational Medicine. 8 (8): 822–832. doi:10.1002/sctm.17-0277. ISSN 2157-6564. PMC 6646685. PMID 31037857.
  32. ^ Hénon, Philippe (2020-04-15). "Key Success Factors for Regenerative Medicine in Acquired Heart Diseases". Stem Cell Reviews and Reports. 16 (3): 441–458. doi:10.1007/s12015-020-09961-0. ISSN 2629-3269. PMC 7253501. PMID 32297205.
  33. ^ Saucourt, Claire; Vogt, Sandrine; Merlin, Amandine; Valat, Christophe; Criquet, Anthony; Harmand, Laurence; Birebent, Brigitte; Rouard, Hélène; Himmelspach, Christian; Jeandidier, Éric; Chartois-Leauté, Anne-Gaële; Derenne, Sophie; Koehl, Laurence; Salem, Joe-Elie; Hulot, Jean-Sébastien (2019-04-29). "Design and Validation of an Automated Process for the Expansion of Peripheral Blood-Derived CD34+ Cells for Clinical Use After Myocardial Infarction". Stem Cells Translational Medicine. 8 (8): 822–832. doi:10.1002/sctm.17-0277. ISSN 2157-6564. PMC 6646685. PMID 31037857.
  34. ^ Hénon, Philippe (2020-04-15). "Key Success Factors for Regenerative Medicine in Acquired Heart Diseases". Stem Cell Reviews and Reports. 16 (3): 441–458. doi:10.1007/s12015-020-09961-0. ISSN 2629-3269. PMC 7253501. PMID 32297205.
  35. ^ Hénon, Philippe; Kowalczyk, Marc; Aries, Anne; Vignon, Christine; Trébuchet, Guillaume; Lahlil, Rachid (2022-04-14). "Industrialized GMP Production of CD34+ Cells (ProtheraCytes®) at Clinical Scale for Treatment of Ischemic Cardiac Diseases Is Feasible and Safe". Stem Cell Reviews and Reports. 18 (5): 1614–1626. doi:10.1007/s12015-022-10373-5. ISSN 2629-3269. PMC 9209364. PMID 35420389.