Jump to content

Tanja Mehlstäubler

From Wikipedia, the free encyclopedia

Tanja Mehlstäubler
Mehlstäubler in 2016
Born
Tanja Elisabeth Mehlstäubler

Known forTopological defects in ion Coulomb crystal
Multi-Ion Clock
Scientific career
FieldsQuantum physics
InstitutionsPhysikalisch-Technische Bundesanstalt
Leibniz University Hannover
Paris Observatory
Stony Brook University
University of Würzburg


Tanja Elisabeth Mehlstäubler (born 1975 in Passau) is a German physicist and professor of quantum optics and metrology. Mehlstäubler is known for her work on topological defects in ion Coulomb crystals[1] and as a pioneer of the multi-ion clock.[2][3][4] She has also developed scalable ion traps for quantum technological applications.

Early life and career

[edit]

Mehlstäubler began studying physics at the University of Würzburg in 1994. From 1997 to 1999, she studied at Stony Brook University, where she graduated in 1999 with a master's degree in physics in the group of Gene D. Sprouse and Luis Orozco on the topic of precision spectroscopy and parity violation in Franzium atoms. In 2005, Mehlstäubler completed her doctorate under Wolfgang Ertmer at the Leibniz University Hannover on the topic of laser cooling methods for optical atomic frequency standards.

From 2006 to 2007, she worked as a post-doctoral researcher at the Paris Observatory (LNE-SYRTE) in France in the group of Arnaud Landragin in the field of gravimetry with atomic quantum sensors. Mehlstäubler then moved to the Physikalisch-Technische Bundesanstalt (PTB) and set up a junior research group in 2009 with the aim of developing a multi-ion clock. She habilitated in 2016 on the topic of quantum sensors with laser-cooled atoms and ions and has been Professor of Quantum Optics and Metrology at Leibniz University Hannover since 2020.

Mehlstäubler has held a visiting professorship at Osaka University in Japan since 2018.

Memberships (selection)

[edit]
[edit]

References

[edit]
  1. ^ K. Pyka, J. Keller, H. L. Partner, R. Nigmatullin, T. Burgermeister, D. M. Meier, K. Kuhlmann, A Retzker, M. B. Plenio, W. H. Zurek, A. del Campo & T. E. Mehlstäubler (2023), "Topological defect formation and spontaneous symmetry breaking in ion Coulomb crystals", Nature Communications, vol. 4, p. 2291, doi:10.1038/ncomms3291{{citation}}: CS1 maint: multiple names: authors list (link)
  2. ^ N. Herschbach, K. Pyka, J. Keller & T. E. Mehlstäubler (2012), "Linear Paul trap design for an optical clock with Coulomb crystals", Appl. Phys. B, vol. 107, pp. 891–906, doi:10.1007/s00340-011-4790-y{{citation}}: CS1 maint: multiple names: authors list (link)
  3. ^ Keller, J., Burgermeister, T., Kalincev, D., Didier, A., Kulosa, A. P., Nordmann, T., Kiethe, J., Mehlstäubler, T. E. (January 7, 2019), American Physical Society (ed.), "Controlling systematic frequency uncertainties at the 10−19 level in linear Coulomb crystals", Phys. Rev. A, vol. 99, no. 1, p. 13405, doi:10.1103/PhysRevA.99.013405{{citation}}: CS1 maint: multiple names: authors list (link)
  4. ^ H. N. Hausser, J. Keller, T. Nordmann, N.M. Bhatt, J. Kiethe, H. Liu, I. M. Richter, M. von Boehn, J. Rahm, S. Weyers, E. Benkler, B. Lipphardt, S. Dörscher, K. Stahl, J. Klose, Ch. Lisdat, M. Filzinger, N. Huntemann, E. Peik, T. E. Mehlstäubler (January 16, 2025), American Physical Society (ed.), "115In+172Yb+ Coulomb Crystal Clock with 2.5×10-18 Systematic Uncertainty", Phys. Rev. Lett., vol. 134, p. 023201, doi:10.1103/PhysRevLett.134.023201{{citation}}: CS1 maint: multiple names: authors list (link)