Steinhaus theorem
In the mathematical field of real analysis, the Steinhaus theorem states that the difference set of a set of positive measure contains an open neighbourhood of zero. It was first proved by Hugo Steinhaus.[1]
Statement
[edit]Let A be a Lebesgue-measurable set on the real line such that the Lebesgue measure of A is not zero. Then the difference set
contains an open neighbourhood of the origin.
The general version of the theorem, first proved by André Weil,[2] states that if G is a locally compact group, and A ⊂ G a subset of positive (left) Haar measure, then
contains an open neighbourhood of unity.
The theorem can also be extended to nonmeagre sets with the Baire property.
Corollary
[edit]A corollary of this theorem is that any measurable proper subgroup of is of measure zero.
See also
[edit]Notes
[edit]- ^ Steinhaus (1920); Väth (2002)
- ^ Weil (1940) p. 50
References
[edit]- Steinhaus, Hugo (1920). "Sur les distances des points dans les ensembles de mesure positive" (PDF). Fund. Math. (in French). 1: 93–104. doi:10.4064/fm-1-1-93-104..
- Weil, André (1940). L'intégration dans les groupes topologiques et ses applications. Hermann.
- Stromberg, K. (1972). "An Elementary Proof of Steinhaus's Theorem". Proceedings of the American Mathematical Society. 36 (1): 308. doi:10.2307/2039082. JSTOR 2039082.
- Sadhukhan, Arpan (2020). "An Alternative Proof of Steinhaus's Theorem". American Mathematical Monthly. 127 (4): 330. arXiv:1903.07139. doi:10.1080/00029890.2020.1711693. S2CID 84845966.
- Väth, Martin (2002). Integration theory: a second course. World Scientific. ISBN 981-238-115-5.
- Yueh-Shin, Lee,(1994). Counting Bipartite Steinhaus Graphs. National Chiao Tung University . https://hdl.handle.net/11296/afmq86