Jump to content

Siddhartha Chib

From Wikipedia, the free encyclopedia
Siddhartha Chib
Alma materUniversity of California, Santa Barbara
Scientific career
FieldsEconometrics, statistics
InstitutionsWashington University in St. Louis
Thesis Some Contributions to Likelihood Based Prediction Methods  (1986)
Academic advisorsSreenivasa Rao Jammalamadaka
Thomas F. Cooley
Websiteapps.olin.wustl.edu/faculty/chib/

Siddhartha Chib is an econometrician, statistician, and the Harry C. Hartkopf Professor of Econometrics and Statistics at Washington University in St. Louis. His work is primarily in Bayesian statistics, econometrics, and Markov chain Monte Carlo methods. Chib's research spans a wide range of topics in Bayesian statistics, with influential contributions to statistical modeling, computational methods, and Bayesian model comparison techniques.

Career

[edit]

Albert and Chib (1993)[1] pioneered a latent variable framework that greatly simplified estimation of binary and categorical response models and became a foundational method in Bayesian statistics. This framework was later extended to the multivariate setting in Chib and Greenberg (1998),[2] which provided a flexible and coherent approach for modeling correlated discrete outcomes.

Chib and Greenberg (1995)[3], a widely cited and influential paper, provides a unified and intuitive framework for understanding the Metropolis–Hastings algorithm and its extensions in high-dimensional settings. Drawing on the fundamental principles of global and local reversibility, the authors provide derivations of both the single-block and multiple-block forms of the algorithm, and guidance on implementation.

Chib (1995) [4] introduced a scalable and widely adopted solution to calculating the marginal likelihood for Bayesian model comparisons. The method relies on an identity that expresses the marginal likelihood as the product of the likelihood and the prior, divided by the posterior ordinate at a fixed point in the parameter space. Chib showed that this posterior ordinate can be factorized into a sequence of marginal and conditional posterior densities, each estimable from MCMC output. The approach was later extended by Chib and Jeliazkov (2001)[5] to Metropolis-Hastings chains and by Basu and Chib (2003)[6] to nonparametric Bayesian models based on Dirichlet process mixtures.

Carlin and Chib (1995)[7] contains an influential Markov chain Monte Carlo method for model selection that involves jumps between model spaces. The approach has proved useful for comparing complex Bayesian models.

Kim, Shephard, and Chib (1998)[8] developed a key method for estimating stochastic volatility models. Extensions to student-t models, covariates, high dimensional time series and models with leverage appear in Chib, Nardari and Shephard (2002),[9] Chib, Nardari and Shephard (2006)[10] and Omori et al. (2007).[11]

Chib (1998)[12] presents a reparameterization of a change point model as a unidirectional hidden Markov model (HMM) that simplifies estimation and inference and enables the use of efficient forward-filtering and backward-sampling techniques for HMMs developed in Chib (1996)[13] and Albert and Chib (1993).[14]

Chib has also worked on and developed original methods for Bayesian inference in Tobit censored responses,[15] discretely observed diffusions,[16] univariate and multivariate ARMA processes,[17][18] multivariate count responses,[19] causal inference,[20][21] hierarchical models of longitudinal data,[22] nonparametric regression,[23][24][25] and tailored randomized block MCMC methods for complex structural models.[26]

Chib, Shin, and Simoni (2018, 2022)[27][28] consider Bayesian inference in models that do not specify a parametric or non-parametric data generating process.

Biography

[edit]

Chib received a bachelor's degree from St. Stephen’s College, Delhi, in 1979, an M.B.A. from the Indian Institute of Management, Ahmedabad, in 1982, and a Ph.D. in economics from the University of California, Santa Barbara, in 1986.[29] His advisors were Sreenivasa Rao Jammalamadaka and Thomas F. Cooley.

Honors and awards

[edit]

Chib is a fellow of the American Statistical Association (2001),[30] an inaugural fellow of the International Society of Bayesian Analysis (2012),[31] and a fellow of the Journal of Econometrics (1996).[32]

Selected publications

[edit]

References

[edit]
  1. ^ Albert, Jim; Chib, Siddhartha (1993). "Bayesian Analysis of Binary and Polychotomous Response Data". Journal of the American Statistical Association. 88 (422): 669–679. doi:10.1080/01621459.1993.10476321. JSTOR 2290350.
  2. ^ Chib, Siddhartha; Greenberg, Edward (1998). "Analysis of multivariate probit models". Biometrika. 85 (2): 347–361. CiteSeerX 10.1.1.198.8541. doi:10.1093/biomet/85.2.347. Archived from the original on 2019-03-21. Retrieved 2020-04-24 – via Oxford Academic.
  3. ^ Chib, Siddhartha; Greenberg, Edward (1995). "Understanding the Metropolis Hastings Algorithm" (PDF). American Statistician. 49 (4): 327–335. doi:10.1080/00031305.1995.10476177. Archived (PDF) from the original on 2019-11-13. Retrieved 2020-04-24.
  4. ^ Chib, Siddhartha (1995). "Marginal Likelihood from the Gibbs Output" (PDF). Journal of the American Statistical Association. 90 (432): 1313–1321. doi:10.1080/01621459.1995.10476635. Archived (PDF) from the original on 2019-07-15. Retrieved 2020-04-30.
  5. ^ Chib, Siddhartha; Jeliazkov, Ivan (2001). "Marginal Likelihood from the Metropolis-Hastings Output" (PDF). Journal of the American Statistical Association. 96 (1): 270–281. CiteSeerX 10.1.1.722.3656. doi:10.1198/016214501750332848. S2CID 44046690. Archived (PDF) from the original on 2019-07-15. Retrieved 2020-04-30.
  6. ^ Basu, Sanjib; Chib, Siddhartha (2003). "Marginal Likelihood and Bayes Factors for Dirichlet Process Mixture Models". Journal of the American Statistical Association. 98 (461): 224–235. CiteSeerX 10.1.1.722.3907. doi:10.1198/01621450338861947. JSTOR 30045209. S2CID 17496626.
  7. ^ Carlin, Bradley; Chib, Siddhartha (1995). "Bayesian Model Choice via Markov Chain Monte Carlo" (PDF). Journal of the Royal Statistical Society, Series B. 57: 473–484. doi:10.1111/j.2517-6161.1995.tb02042.x.
  8. ^ Kim, Sangjoon; Shephard, Neil; Chib, Siddhartha (1998). "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models" (PDF). Review of Economic Studies. 65 (3): 361–393. doi:10.1111/1467-937X.00050. S2CID 18381818. Archived (PDF) from the original on 2017-08-11. Retrieved 2020-09-29.
  9. ^ Chib, Siddhartha; Nardari, Federico; Shephard, Neil (2002). "Markov chain Monte Carlo methods for stochastic volatility models". Journal of Econometrics. 108 (2): 281–316. doi:10.1016/S0304-4076(01)00139-6.
  10. ^ Chib, Siddhartha; Nardari, Federico (2006). "Analysis of high dimensional multivariate stochastic volatility models". Journal of Econometrics. 134 (2): 341–371. doi:10.1016/j.jeconom.2005.06.026.
  11. ^ Omori, Yasuhiro; Chib, Siddhartha; Shephard, Neil; Nakajima, Jouchi (2007). "Stochastic volatility with leverage: Fast and efficient likelihood inference". Journal of Econometrics. 140 (2): 425–449. doi:10.1016/j.jeconom.2006.07.008.
  12. ^ Chib, Siddhartha (1998). "Estimation and comparison of multiple change-point models" (PDF). Journal of Econometrics. 86 (2): 221–241. doi:10.1016/S0304-4076(97)00115-2.
  13. ^ Chib, Siddhartha (1996). "Calculating Posterior Distributions and Modal Estimates in Markov Mixture Models" (PDF). Journal of Econometrics. 75: 79–97. CiteSeerX 10.1.1.119.4348. doi:10.1016/0304-4076(95)01770-4.
  14. ^ Albert, Jim; Chib, Siddhartha (1993). "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts". Journal of Business and Economic Statistics. 11 (1): 1–15. doi:10.2307/1391303. JSTOR 1391303.
  15. ^ Chib, Siddhartha (1992). "Bayes inference in the Tobit censored regression model". Journal of Econometrics. 51 (1–2): 79–99. doi:10.1016/0304-4076(92)90030-U.
  16. ^ Eleriain, Ola; Chib, Siddhartha; Shephard, Neil (2001). "Likelihood Inference for Discretely Observed Nonlinear Diffusions". Econometrica. 69 (4): 959–993. doi:10.1111/1468-0262.00226. Archived from the original on 2020-10-26. Retrieved 2020-08-28.
  17. ^ Chib, Siddhartha; Greenberg, Edward (1994). "Bayes inference in regression models with ARMA (p, q) errors". Journal of Econometrics. 64 (1–2): 183–206. doi:10.1016/0304-4076(94)90063-9. Archived from the original on 2020-07-24. Retrieved 2020-08-22.
  18. ^ Chib, Siddhartha; Greenberg, Edward (1995). "Hierarchical analysis of SUR models with extensions to correlated serial errors and time-varying parameter models". Journal of Econometrics. 68 (2): 339–360. doi:10.1016/0304-4076(94)01653-H.
  19. ^ Chib, Siddhartha; Winkelmann, Rainer (2001). "Markov Chain Monte Carlo Analysis of Correlated Count Data" (PDF). Journal of Business and Economic Statistics. 19 (4): 428–435. doi:10.1198/07350010152596673.
  20. ^ Chib, Siddhartha (2007). "Analysis of treatment response data without the joint distribution of potential outcomes". Journal of Econometrics. 140 (2): 401–412. doi:10.1016/j.jeconom.2006.07.009.
  21. ^ Chib, Siddhartha; Greenberg, Edward; Simoni, Anna (2022). "Nonparametric Bayes Analysis of the Sharp and Fuzzy Regression Discontinuity Designs" (PDF). Econometric Theory. 39 (3): 481–533. doi:10.1017/S0266466622000019. S2CID 28242828.
  22. ^ Chib, Siddhartha; Carlin, Bradley (1998). "On MCMC sampling in hierarchical longitudinal models". Statistics and Computing. 9: 17–26. doi:10.1023/A:1008853808677. S2CID 15267509.
  23. ^ Chib, Siddhartha; Jeliazkov, Ivan (2006). "Inference in Semiparametric Dynamic Models for Binary Longitudinal Data". Journal of the American Statistical Association. 101 (2): 685–700. doi:10.1198/016214505000000871. JSTOR 27590727. S2CID 10169747.
  24. ^ Chib, Siddhartha; Greenberg, Edward (2010). "Additive cubic spline regression with Dirichlet process mixture errors". Journal of Econometrics. 156 (2): 322–336. doi:10.1016/j.jeconom.2009.11.002.
  25. ^ Chib, Siddhartha; Greenberg, Edward (2013). "On conditional variance estimation in nonparametric regression" (PDF). Statistics and Computing. 23: 261–270.
  26. ^ Chib, Siddhartha; Ramamurthy, Srikanth (2010). "Tailored randomized block MCMC methods with application to DSGE models". Journal of Econometrics. 155 (1): 19–38. doi:10.1016/j.jeconom.2009.09.013.
  27. ^ Chib, Siddhartha; Shin, Minchul; Simoni, Anna (2018). "Bayesian Analysis and Comparison of Moment Condition Models" (PDF). Journal of the American Statistical Association. 113 (4): 1656–1668. arXiv:1606.02931. doi:10.1080/01621459.2017.1358172. S2CID 56211599.
  28. ^ Chib, Siddhartha; Shin, Minchul; Simoni, Anna (2022). "Bayesian Estimation and Comparison of Conditional Moment Models" (PDF). Journal of the Royal Statistical Society, Series B (Statistical Methodology). 84 (3): 740–764. arXiv:2110.13531. doi:10.1111/rssb.12484. S2CID 209455901.
  29. ^ "Faculty". Washington University in St. Louis. Archived from the original on 23 April 2020. Retrieved 24 April 2020.
  30. ^ "ASA Fellows List". American Statistical Association. Archived from the original on 21 May 2020. Retrieved 24 April 2020.
  31. ^ "ISBA Fellows". The International Society for Bayesian Analysis. Archived from the original on 9 February 2018. Retrieved 24 April 2020.
  32. ^ "Journal of Econometrics Fellows". Journal of Econometrics. 78 (1): 131–133. January 1997. doi:10.1016/S0304-4076(97)80004-8.
[edit]