Jump to content

Pentacarbonyl(tetrahydrofuran)tungsten

From Wikipedia, the free encyclopedia
Pentacarbonyl(tetrahydrofuran)tungsten
Identifiers
3D model (JSmol)
ChemSpider
  • InChI=1S/C4H8O.5CO.W/c1-2-4-5-3-1;5*1-2;/h1-4H2;;;;;;
    Key: MSEICUXSETXIDF-UHFFFAOYSA-N
  • O1CCCC1.[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[C-]#[O+].[W]
Properties
C9H8O6W
Molar mass 396.00 g·mol−1
Solubility in THF Soluble
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Potentially toxic if inhaled or ingested
Related compounds
Related compounds
Tungsten hexacarbonyl
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pentacarbonyl(tetrahydrofuran)tungsten is an organotungsten compound with the formula W(CO)5(THF). It consists of a tungsten center with zero oxidation state coordinated to five carbonyl (CO) ligands and one tetrahydrofuran (THF) ligand. This compound was first stabilized by Raymond K. Sheline in 1965.[1] It is typically prepared by the reaction of tungsten hexacarbonyl (W(CO)6) with tetrahydrofuran under ultraviolet (UV) irradiation.[1][2] This compound serves as a useful precursor in organometallic chemistry, where the labile THF ligand can be readily displaced by other ligands, allowing for the synthesis of various tungsten complexes. Due to its enhanced reactivity compared to W(CO)6, it is a common starting material for the synthesis of substituted tungsten carbonyl complexes.[20]-[39]

Preparation

[edit]

W(CO)5(THF) is typically synthesized by the reaction of tungsten hexacarbonyl W(CO)6 with tetrahydrofuran solvent under ultraviolet (UV) irradiation for 4 hours (Figure 3).[1][3] The reaction proceeds through the photolytic dissociation of one carbonyl ligand from W(CO)6, allowing THF to coordinate in its place:

Figure 3: Synthesis of W(CO)5(THF)

This method results W(CO)5(THF) as a yellow crystalline solid, which is air-sensitive and must be handled under an inert atmosphere.

Characterization

[edit]

The characterization of W(CO)5(THF) is primarily based on spectroscopic techniques such as infrared (IR) spectroscopy. The IR spectrum of the complex exhibits distinct CO stretching frequencies (𝜈CO), which differ from those observed for W(CO)6 (1983 cm−1) due to the influence of the coordinated THF ligand.[1][3] At 20 °C, three characteristic absorptions are observed at 2077 cm⁻¹ (w), 1934 cm⁻¹ (s), and 1912 cm⁻¹ (ms), corresponding to the A1, E, and A1 vibrational modes, respectively.[1] These shifts indicate the reduced symmetry from Oh in W(CO)6 to C4v in W(CO)5(THF), with the THF ligand reducing back-donation to the CO ligands.

Electronic structure

[edit]
Figure 4a: Intrinsic Bonding Orbitals (IBOs) of W(CO)5(THF) generated Using B3LYP/def2-SVP level of theory and IBOView, depicting π - backdonation to CO ligands in W(CO)5(THF)
Figure 4b: Intrinsic Bonding Orbitals (IBOs) of W(CO)5(THF) generated Using B3LYP/def2-SVP level of theory and IBOView, depicting π - backdonation to CO ligands in W(CO)5(THF)

The electronic structure of W(CO)5(THF) is governed by the d6 configuration of the tungsten(0) center, which interacts with five CO ligands and one THF ligand (Figure 2). In an idealized octahedral field, the five d-orbitals of tungsten split into two energy levels:[4][5] the higher-energy eg set (d and dx² - y²) and the lower-energy t2g set (dxy, dxz, dyz). The CO ligands act as strong-field ligands based on the spectrochemical series, inducing a large Δ₀ (octahedral splitting energy), which leads to a low-spin electron configuration where the six d-electrons occupy the lower-energy t2g orbitals. The d and dx² - y² orbitals remain largely unoccupied and serve as antibonding orbitals in metal-ligand interactions. In W(CO)5(THF), the departure from perfect octahedral symmetry due to the replacement of one CO ligand by THF introduces a slight tetragonal distortion, lowering the symmetry to C4v (Figure 2). This results in a slight destabilization of the d orbital, making it more available for interactions with the axial THF ligand. The tungsten center engages in both σ-donation and π-backdonation with its ligands. The CO ligands donate electron density via their lone pairs into the vacant metal 5d and 5dx² - y² orbitals (σ-donation)(Figure 5). At the same time, the filled 5dxy, 5dxz, and 5dyz (Figure 4a, 4b, 4c) orbitals of tungsten overlap with the empty π*-orbitals of CO, allowing for π-backdonation, which strengthens the metal-ligand bond and weakens the C–O bonds. The THF ligand, being a weaker donor, contributes primarily through σ-donation to the vacant metal 5d and 5dx² - y² orbitals (Figure 5) without significant π-backbonding effects. Due to extensive π-backdonation to CO ligands, tungsten in W(CO)5(THF) exhibits electron deficiency, making the complex highly reactive toward ligand substitution and electrophilic attack. The THF ligand is particularly labile and can be readily displaced by stronger donor ligands such as phosphines or carbenes. This reactivity enables W(CO)5(THF) to participate in various transformations, including cyclization reactions and Diels-Alder reactions.

Figure 5: Intrinsic Bonding Orbitals (IBOs) of W(CO)5(THF) generated Using B3LYP/def2-SVP level of theory and IBOView, depicting σ-bonding from CO and THF ligands in W(CO)5(THF)
Figure 4c: Intrinsic Bonding Orbitals (IBOs) of W(CO)5(THF) generated Using B3LYP/def2-SVP level of theory and IBOView, depicting π - backdonation to CO ligands in W(CO)5(THF)


Applications

[edit]

Hetero Diels-Alder and cyclization reactions

[edit]

The weakly coordinating nature of the THF ligand in W(CO)5(THF) renders the tungsten center a potent Lewis acid, which allows it to coordinate with alkynes and carbonyl-containing substrates, facilitating a range of transformations (Figure 5 & 6).[6][7][8][9][10][11][12][13][14][15][16][17][18][19] These transformations often proceed via a Fischer carbene intermediate, in which the tungsten center forms a π-complex with an alkyne, activating it toward nucleophilic attack or cyclization.

Hetero-Diels-Alder reactions

[edit]

The hetero-Diels-Alder (HDA) reaction is a powerful method for synthesizing six-membered oxygen- and nitrogen-containing heterocycles (Figure 6A, 6B, 6C). W(CO)5(THF) plays a crucial role in this reaction by coordinating to the alkyne component and forming Fischer carbene intermediate(Figure 6C 1), lowering the LUMO energy of the alkyne and enhancing its electrophilicity.[6][11][12][17] This effect accelerates the [4+2] cycloaddition between the alkyne and an electron-rich component, leading to heterocyclic products with high regio- and stereoselectivity. For example, in β-ethynyl-α,β-unsaturated carbonyl systems[6][11][12][17] (Figure 6A, 6C), W(CO)5(THF) activates the alkyne functionality, promoting its selective reaction with conjugated enones or imines to form oxygen- or nitrogen-containing heterocycles. This activation is particularly useful in natural product synthesis and medicinal chemistry, where heterocyclic motifs are prevalent.

Figure 6: A) Diels–Alder reaction–retro-Diels–Alder sequence to form substituted naphthalene from o-ethynylaryl carbonyl via cyclic fischer carbene complexes, B) Vinylidene complex formation from (thf)W(CO)5 and ethynylimines instigates electrocyclization to afford 2-arylquinolines after oxidative demetallation, C) Formation of Pyranylidene-Metal Complex (2) from a Vinylidene-Metal Intermediate (1) via [4 + 2] Cycloaddition Reactions.

Cycloisomerization and electrocyclization reactions

[edit]

W(CO)5(THF) is also highly effective in cycloisomerization reactions, particularly in 4-alkyn-1-ol systems (Figure 7).[10][14][15][16] Here, the tungsten center coordinates to the alkyne, guiding the regioselective rearrangement of the substrate into a cyclic ether or lactone. This transformation is valuable for synthesizing oxygenated heterocycles with structural complexity. Additionally, W(CO)5(THF) facilitates electrocyclization processes.[18] In these reactions, the tungsten-bound alkyne undergoes pericyclic ring closure, forming cyclic products via a concerted mechanism. The role of tungsten is to stabilize key reaction carbene intermediates and modulate the electronic properties of the reacting system, ensuring high efficiency and selectivity.

Figure 7: (THF)W(CO)5 -promoted endo-cycloisomerization reaction of substituted 4-alkyn-1-ol derivatives.

Ligand substitution in W(CO)5(THF)

[edit]

The labile THF ligand in W(CO)5(THF) makes it highly reactive in ligand substitution reactions, allowing a variety of ligands[20][21][22][23][24][25][26][27][28][29][30][31][32][33][34][35][36][37][38][39] to coordinate to the tungsten center (Scheme 3). Carbene ligands can replace THF to form carbene-tungsten complexes,[20][21][22][23] which are valuable not only in general catalysis but also in olefin metathesis, cyclopropanation, and Fischer-Tropsch chemistry, enabling C–C bond formation and selective functionalization. Similarly, phosphines (PR3)[25][26][27] readily substitute THF, tuning the electronic and steric properties of the complex for catalytic applications by increasing π-backdonation, altering CO ligand strength, and controlling ligand exchange and reaction selectivity. The tungsten center also accommodates anionic ligands.[28][29] Furthermore, low-valent main-group organometallic compounds (e.g., Si, Sn, Sb, Bi)[33][34][35][36][37][38][39] and transition metals[30][31][32] can coordinate to tungsten by replacing THF, forming heterobimetallic or heteronuclear complexes that exhibit σ-donation and d–d interactions, significantly influencing electronic properties. This versatility in ligand substitution expands the utility of W(CO)5(THF) in organometallic chemistry and catalysis.

Figure 8: Ligand Substitution in W(CO)5(THF) with Silylene (A), N-Heterocyclic Carbene (B), Phosphine (C), and Anionic Phosphine Ligand (D)

References

[edit]
  1. ^ a b c d e Stolz, Ingo W.; Haas, Heinz; Sheline, Raymond K. (1965-02-01). "Infrared Spectroscopic Evidence for New Metal Carbonyl Complexes with Aromatic Ligands". Journal of the American Chemical Society. 87 (4): 716–718. Bibcode:1965JAChS..87..716S. doi:10.1021/ja01082a006. ISSN 0002-7863.
  2. ^ Bockfeld, Dirk; Doddi, Adinarayana; Jones, Peter G.; Tamm, Matthias (2016). "Transition-Metal Carbonyl Complexes and Electron-Donating Properties of N-Heterocyclic-Carbene–Phosphinidene Adducts". European Journal of Inorganic Chemistry. 2016 (23): 3704–3713. doi:10.1002/ejic.201600483. ISSN 1099-0682.
  3. ^ a b Banno, Motohiro; Iwata, Koichi; Hamaguchi, Hiro-o (2007-05-22). "Intra- and intermolecular vibrational energy transfer in tungsten carbonyl complexes W(CO)5(X) (X=CO, CS, CH3CN, and CD3CN)". The Journal of Chemical Physics. 126 (20): 204501. doi:10.1063/1.2737449. ISSN 0021-9606. PMID 17552772.
  4. ^ Gray, Harry B.; Beach, N. A. (1963-10-01). "The Electronic Structures of Octahedral Metal Complexes. I. Metal Hexacarbonyls and Hexacyanides". Journal of the American Chemical Society. 85 (19): 2922–2927. Bibcode:1963JAChS..85.2922G. doi:10.1021/ja00902a014. ISSN 0002-7863.
  5. ^ Hoffmann, Roald; Alvarez, Santiago; Mealli, Carlo; Falceto, Andrés; Cahill, Thomas J. III; Zeng, Tao; Manca, Gabriele (2016-07-27). "From Widely Accepted Concepts in Coordination Chemistry to Inverted Ligand Fields". Chemical Reviews. 116 (14): 8173–8192. doi:10.1021/acs.chemrev.6b00251. ISSN 0009-2665. PMID 27398715.
  6. ^ a b c Ohe, Kouichi; Miki, Koji; Yokoi, Tomomi; Nishino, Fumiaki; Uemura, Sakae (2000-12-01). "Novel Pyranylidene Complexes from Group 6 Transition Metals and β-Ethynyl α,β-Unsaturated Carbonyl Compounds". Organometallics. 19 (25): 5525–5528. doi:10.1021/om0006763. ISSN 0276-7333.
  7. ^ Fisher, Ethan L.; Wilkerson-Hill, Sidney M.; Sarpong, Richmond (2012-06-20). "Tungsten-Catalyzed Heterocycloisomerization Approach to 4,5-Dihydro-benzo[b]furans and -indoles". Journal of the American Chemical Society. 134 (24): 9946–9949. Bibcode:2012JAChS.134.9946F. doi:10.1021/ja3045647. ISSN 0002-7863. PMID 22663199.
  8. ^ Kusama, Hiroyuki; Onizawa, Yuji; Iwasawa, Nobuharu (2006-12-01). "W(CO)5(L)-Catalyzed Tandem Intramolecular Cyclopropanation/Cope Rearrangement for the Stereoselective Construction of Bicyclo[5.3.0]decane Framework". Journal of the American Chemical Society. 128 (51): 16500–16501. Bibcode:2006JAChS.12816500K. doi:10.1021/ja0671924. ISSN 0002-7863. PMID 17177389.
  9. ^ Dötz, Karl Heinz; Neuß, Oliver; Nieger, Martin (October 1996). "Diastereoselective Synthesis of Metal Carbene-Functionalized Spirocyclic Carbohydrates1". Synlett. 1996 (10): 995–996. doi:10.1055/s-1996-5641.
  10. ^ a b Miura, Tomoya; Kiyota, Koichi; Kusama, Hiroyuki; Lee, Kooyeon; Kim, Hyunseok; Kim, Sunggak; Lee, Phil Ho; Iwasawa, Nobuharu (2003-05-01). "W(CO)5(L)-Catalyzed Endo-Selective Cyclization of Allenyl Silyl Enol Ethers: An Efficient Method for the Cyclopentene Annulation onto α,β-Unsaturated Ketones". Organic Letters. 5 (10): 1725–1728. doi:10.1021/ol034365a. ISSN 1523-7060. PMID 12735762.
  11. ^ a b c Miki, Koji; Yokoi, Tomomi; Nishino, Fumiaki; Kato, Yumiko; Washitake, Yosuke; Ohe, Kouichi; Uemura, Sakae (2004-03-01). "Catalytic Cyclopropanation of Alkenes via (2-Furyl)carbene Complexes from 1-Benzoyl-cis-1-buten-3-yne with Transition Metal Compounds". The Journal of Organic Chemistry. 69 (5): 1557–1564. doi:10.1021/jo0352732. ISSN 0022-3263. PMID 14987011.
  12. ^ a b c Kusama, Hiroyuki; Funami, Hideaki; Shido, Masahide; Hara, Yoshihiro; Takaya, Jun; Iwasawa, Nobuharu (2005-03-01). "Generation and Reaction of Tungsten-Containing Carbonyl Ylides: [3 + 2]-Cycloaddition Reaction with Electron-Rich Alkenes". Journal of the American Chemical Society. 127 (8): 2709–2716. Bibcode:2005JAChS.127.2709K. doi:10.1021/ja044194k. ISSN 0002-7863. PMID 15725028.
  13. ^ Sordo, Tomás; Campomanes, Pablo; Diéguez, Alejandro; Rodríguez, Félix; Fañanás, Francisco J. (2005-01-01). "Solvent-Assisted New Reaction Pathways for the (THF)W(CO)5-Promoted endo- and exo-Cycloisomerization of 4-Pentyn-1-ol: A Theoretical Investigation". Journal of the American Chemical Society. 127 (3): 944–952. Bibcode:2005JAChS.127..944S. doi:10.1021/ja045567k. ISSN 0002-7863. PMID 15656633.
  14. ^ a b McDonald, Frank E.; Bowman, Jason L. (1996-07-01). "Tungsten carbonyl-induced cyclizations of alkynyl alcohols to dihydropyranylidene carbenes and α-stannyl dihydropyrans". Tetrahedron Letters. 37 (27): 4675–4678. doi:10.1016/0040-4039(96)00961-6. ISSN 0040-4039.
  15. ^ a b McDonald, Frank E.; Zhu, Hugh Y. H. (1997-08-11). "Synthesis of pyranose glycals via tungsten and molybdenum pentacarbonyl-induced alkynol cyclizations". Tetrahedron. 53 (32): 11061–11068. doi:10.1016/S0040-4020(97)00366-9. ISSN 0040-4020.
  16. ^ a b Weyershausen, Bernd; Nieger, Martin; Dötz, Karl Heinz (1998-04-01). "Chiral 2-Oxacyclopentylidene Complexes via Metal-Assisted Cycloisomerization of Carbohydrate-Derived Butynols1". Organometallics. 17 (8): 1602–1607. doi:10.1021/om970859y. ISSN 0276-7333.
  17. ^ a b c Iwasawa, Nobuharu; Shido, Masahide; Maeyama, Katsuya; Kusama, Hiroyuki (2000-10-01). "Novel Synthesis of Pentacarbonylbenzopyranylidenetungsten(0) Complexes and Their Diels−Alder Reaction with Electron-Rich Alkenes". Journal of the American Chemical Society. 122 (41): 10226–10227. Bibcode:2000JAChS.12210226I. doi:10.1021/ja001481p. ISSN 0002-7863.
  18. ^ a b Yan, Jingbo; Zhu, Jin; Matasi, Julius J.; Herndon, James W. (1999-02-01). "Relative Asymmetric Induction in the Intramolecular Reaction between Alkynes and Cyclopropylcarbene−Chromium Complexes: Stereocontrolled Synthesis of Five-Membered Rings Fused to Oxygen Heterocycles". The Journal of Organic Chemistry. 64 (4): 1291–1301. doi:10.1021/jo982144q. ISSN 0022-3263.
  19. ^ Sheng, Yinghong; Musaev, Djamaladdin G.; Reddy, K. Subba; McDonald, Frank E.; Morokuma, Keiji (2002-04-01). "Computational Studies of Tungsten-Catalyzed endo-Selective Cycloisomerization of 4-Pentyn-1-ol". Journal of the American Chemical Society. 124 (15): 4149–4157. Bibcode:2002JAChS.124.4149S. doi:10.1021/ja017668d. ISSN 0002-7863. PMID 11942854.
  20. ^ a b Hahn, F. Ekkehardt; Wittenbecher, Lars; Boese, Roland; Bläser, Dieter (1999). "N,N′-Bis(2,2-dimethylpropyl)benzimidazolin-2-ylidene: A Stable Nucleophilic Carbene Derived from Benzimidazole". Chemistry – A European Journal. 5 (6): 1931–1935. doi:10.1002/(SICI)1521-3765(19990604)5:6<1931::AID-CHEM1931>3.0.CO;2-M. ISSN 1521-3765.
  21. ^ a b Meier, Nicole; Hahn, F. Ekkehardt; Pape, Tania; Siering, Carsten; Waldvogel, Siegfried R. (2007). "Molecular Recognition Utilizing Complexes with NH,NR-Stabilized Carbene Ligands". European Journal of Inorganic Chemistry. 2007 (9): 1210–1214. doi:10.1002/ejic.200601258. ISSN 1099-0682.
  22. ^ a b Ghadwal, Rajendra S.; Rottschäfer, Dennis; Andrada, Diego M.; Frenking, Gernot; Schürmann, Christian J.; Stammler, Hans-Georg (2017). "Normal-to-abnormal rearrangement of an N-heterocyclic carbene with a silylene transition metal complex". Dalton Transactions. 46 (24): 7791–7799. doi:10.1039/C7DT01199G. ISSN 1477-9226. PMID 28590484.
  23. ^ a b Nonnenmacher, Michael; Kunz, Doris; Rominger, Frank; Oeser, Thomas (2005-12-01). "First examples of dipyrido[1,2-c:2′,1′-e]imidazolin-7-ylidenes serving as NHC-ligands: Synthesis, properties and structural features of their chromium and tungsten pentacarbonyl complexes". Journal of Organometallic Chemistry. Carbene Chemistry. 690 (24): 5647–5653. doi:10.1016/j.jorganchem.2005.07.033. ISSN 0022-328X.
  24. ^ Toriyama, Masaharu; Maher, Tiffany R.; Holovics, Thomas C.; Vanka, Kumar; Day, Victor W.; Berrie, Cindy L.; Thompson, Ward H.; Barybin, Mikhail V. (2008-04-01). "Multipoint Anchoring of the [2.2.2.2]Metacyclophane Motif to a Gold Surface via Self-Assembly: Coordination Chemistry of a Cyclic Tetraisocyanide Revisited". Inorganic Chemistry. 47 (8): 3284–3291. doi:10.1021/ic702401b. ISSN 0020-1669. PMID 18345627.
  25. ^ a b Edwards, Peter G.; Kariuki, Benson M.; Limon, Matthieu; Ooi, Li-Ling; Platts, James A.; Newman, Paul D. (2011). "Metal Complexes of a Structurally Embellished Phosphinane Ligand: An Assessment of Stereoelectronic Effects". European Journal of Inorganic Chemistry. 2011 (8): 1230–1239. doi:10.1002/ejic.201001170. ISSN 1099-0682.
  26. ^ a b Darensbourg, Donald J.; Ortiz, Cesar G.; Kamplain, Justin W. (2004-04-01). "A New Water-Soluble Phosphine Derived from 1,3,5-Triaza-7-phosphaadamantane (PTA), 3,7-Diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane. Structural, Bonding, and Solubility Properties". Organometallics. 23 (8): 1747–1754. doi:10.1021/om0343059. ISSN 0276-7333.
  27. ^ a b King, Aaron J.; Goicoechea, Jose M. (2024). "Ligand Centered Reactivity of a Transition Metal Bound Geometrically Constrained Phosphine". Chemistry – A European Journal. 30 (26): e202400624. doi:10.1002/chem.202400624. ISSN 1521-3765. PMID 38436534.
  28. ^ a b Darensbourg, Donald J.; Joyce, Jennifer A.; Bischoff, Christopher J.; Reibenspies, Joseph H. (March 1991). "Further studies on the role of neighboring group participation in carbonyl substitution reactions of group 6 metal carboxylates". Inorganic Chemistry. 30 (5): 1137–1142. doi:10.1021/ic00005a047. ISSN 0020-1669.
  29. ^ a b Hoge, Berthold; Thösen, Christoph; Herrmann, Tobias; Pantenburg, Ingo (2003-06-01). "Stabilization of the P(CF3)2- and P(C6F5)2- Ions by Coordination to Pentacarbonyl Tungsten: Structures of [18-crown-6-K]P(CF3)2, [18-crown-6-K][W{P(CF3)2}(CO)5], and [18-crown-6-K][{W(CO)5}2{μ-P(C6F5)2}]·THF". Inorganic Chemistry. 42 (11): 3633–3641. doi:10.1021/ic034165v. ISSN 0020-1669. PMID 12767203.
  30. ^ a b Batchelor, Raymond J.; Einstein, Frederick W. B.; Pomeroy, Roland K.; Shipley, John A. (July 1992). "Synthesis and structure of osmium-tungsten carbonyl tert-butyl isocyanide (OC)4(tert-BuNC)OsOs(CO)3(CNBu-tert)W(CO)5, a second example of a compound with dative metal-metal bonds in tandem". Inorganic Chemistry. 31 (14): 3155–3157. doi:10.1021/ic00040a029. ISSN 0020-1669.
  31. ^ a b Jiang, Faming; Jenkins, Hilary A.; Biradha, Kumar; Davis, Harry B.; Pomeroy, Roland K.; Zaworotko, Michael J. (2000-11-01). "Compounds with Unbridged Dative Metal−Metal Bonds of Formula (R3P)2(OC)3OsW(CO)5 and Related Complexes". Organometallics. 19 (24): 5049–5062. doi:10.1021/om990790p. ISSN 0276-7333.
  32. ^ a b Jiang, Faming; Biradha, Kumar; Leong, Weng Kee; Pomeroy, Roland K; Zaworotko, Michael J (August 1999). "Dicarbonylcyclopentadienyliridium, (η-C5H5)Ir(CO)2, as a ligand". Canadian Journal of Chemistry. 77 (8): 1327–1335. doi:10.1139/v99-131. ISSN 0008-4042.
  33. ^ a b Azhakar, Ramachandran; Ghadwal, Rajendra S.; Roesky, Herbert W.; Wolf, Hilke; Stalke, Dietmar (2012-02-01). "Stabilization of Low Valent Silicon Fluorides in the Coordination Sphere of Transition Metals". Journal of the American Chemical Society. 134 (4): 2423–2428. Bibcode:2012JAChS.134.2423A. doi:10.1021/ja210697p. ISSN 0002-7863. PMID 22191508.
  34. ^ a b Mansell, Stephen M.; Herber, Rolfe H.; Nowik, Israel; Ross, Douglas H.; Russell, Christopher A.; Wass, Duncan F. (2011-03-21). "Coordination Chemistry of N-Heterocyclic Stannylenes: A Combined Synthetic and Mössbauer Spectroscopy Study". Inorganic Chemistry. 50 (6): 2252–2263. doi:10.1021/ic101920x. ISSN 0020-1669. PMID 21319790.
  35. ^ a b Sasamori, Takahiro; Arai, Yoshimitsu; Takeda, Nobuhiro; Okazaki, Renji; Tokitoh, Norihiro (2001-01-01). "The First Chemical Trapping of Stibinidene, a Monovalent Antimony Compound". Chemistry Letters. 30 (1): 42–43. doi:10.1246/cl.2001.42. ISSN 0366-7022.
  36. ^ a b Saur, Isabelle; Garcia Alonso, Sonia; Gornitzka, Heinz; Lemierre, Virginie; Chrostowska, Anna; Barrau, Jacques (2005-06-01). "In Search of Cationic Germanium(II)−Transition Metal Complexes L2Ge+W(CO)5 and L2Ge+W(CO)4Ge+L2". Organometallics. 24 (12): 2988–2996. doi:10.1021/om050214v. ISSN 0276-7333.
  37. ^ a b Scheer, Manfred; Kramkowski, Peter; Schuster, Kay (1999-07-01). "An Approach to Novel Complexes with a Tungsten−Phosphorus Triple Bond". Organometallics. 18 (15): 2874–2883. doi:10.1021/om990019e. ISSN 0276-7333.
  38. ^ a b Vránová, Iva; Kremláček, Vít; Erben, Milan; Turek, Jan; Jambor, Roman; Růžička, Aleš; Alonso, Mercedes; Dostál, Libor (2017). "A comparative study of the structure and bonding in heavier pnictinidene complexes [(ArE)M(CO) n ] (E = As, Sb and Bi; M = Cr, Mo, W and Fe)". Dalton Transactions. 46 (11): 3556–3568. doi:10.1039/C7DT00095B. ISSN 1477-9226. PMID 28240753.
  39. ^ a b Balazs, Lucia; Breunig, Hans J.; Lork, Enno; Silvestru, Cristian (2003). "Low-Valent Organobismuth Compounds with Intramolecular Coordination: cyclo-R3Bi3, cyclo-R4Bi4, RBi[W(CO)5]2, and R4Bi2 [R = 2-(Me2NCH2)C6H4]". European Journal of Inorganic Chemistry. 2003 (7): 1361–1365. doi:10.1002/ejic.200390176. ISSN 1099-0682.