Paleobiota of the Posidonia Shale

Part of a series on |
Paleontology |
---|
![]() |
Paleontology Portal Category |
The Sachrang Formation or "Posidonienschiefer" Formation (common name the "Posidonia Shale") is a geological formation of southwestern Germany, northern Switzerland, northwestern Austria, southeast Luxembourg and the Netherlands, that spans about 3 million years during the Early Jurassic period (early Toarcian stage). It is known for its detailed fossils, especially marine biota, listed below.[1] Composed mostly of black shale, the formation is a Lagerstätte, where fossils show exceptional preservation (including exquisite soft tissues), with a thickness that varies from about 1 m to about 40 m on the Rhine level, being on the main quarry at Holzmaden between 5 and 14 m.[1] Some of the preserved material has been transformed into the fossil hydrocarbon jet which, especially jet derived from wood remains, is used for jewelry.[2] The exceptional preservation seen in the Posidonia Shale has been studied since the late 1800s, finding that a cocktail of chemical and environmental factors led to such an impressive preservation of the marine fauna.[2] The most common theory is that changes in the oxygen level, where the different anoxic events of the Toarcian left oxygen-depleted bottom waters, stopped scavengers from consuming the dead bodies.[3]
Biological interactions
[edit]- The "Monotis"-Dactylioceras bed shows an accumulation of the bivalves Meleagrinella substriata and the ammonite Dactylioceras, that were the most abundant representatives of its group on the Altdorf region, and were probably washed to near epicontinental waters by a rapid event, or as result of a large succession of events.[4] This assemblage has been compared with modern Brazilian coastal mangroves and also linked to tsunami events.[5]
- Several empty ammonite shells from Holzmaden have been found with associated decapods inside.[6] This includes a possible member of the genus Paleastacus inside a chamber of a Harpoceras.[6] This decapod is related to the family Erymidae, which are considered to be possible bottom-dweller carnivores or carrion feeders.[6] The associated fossil has several spherical structures that had been interpreted as decapod coprolites, implying that the animal lived for a long period within the shell.[6] More recent studies had recovered new data about the inquilinism of decapods inside ammonites, this time, however, recovering three eryonoids together within a body chamber.[7] The eryonoids most likely used the ammonoid as some kind of shelter, possibly due to the shell being an ideal location to molt, protection against predators, a source of food or that the shell was used as a long-term shelter.[7] One key aspect found was that the muddy bottom was not suitable for burrowing, implying that the decapods inhabited a different shelter due to being unable to make their own.[7] Other biota are found related to the decayed ammonite shells, such as serpulid annelids and bivalves, creating what was denominated as "benthic islands".[6]
- Beyond trace fossils, several vertebrate specimens show associations with crustacean exoskeletal remains such as GPIT-PV-31586 and SMNS 58389 (Pachycormus macropterus) with necrophagous interaction as well SMNS 55934 (Stenopterygius quadriscissus) or SMNS 95401 (Metopacanthus sp.).[8]
- The genus Clarkeiteuthis and its predatory behaviour, found associated with fishes of the genus Leptolepis.[9] Based on the position of prey and predator, it was suggested that the cephalopods caught and killed the fishes while the schools were still in well-oxygenated waters and then descended into oxygen-depleted water layers where the cephalopod suffocated and died attached to its prey.[9] The cephalopods’ arms were contracted over the fish, likely killing it quickly by cutting its spine.[9]
- Several Geotheutis have been reported with eumelanin preserved along with their ink sacs.[10]
- A specimen of Jeletzkyteuthis found in Ohmden has appeared predating a Parabelopeltis. The association of these 2 genera shows the predatory behaviour of this group when its members lived in epicontinental seas, which is rather different than extant Vampyromorphs.[11]
- A pabulite (fossilized meal which never entered the digestive tract) was recovered from Holzmaden, being composed of an associated Passaloteuthis laevigata with its arms embracing an exuvia of a crustacean.[12] The belemnnite itself can be seen as the remnant of a failed predation attempt from a Hybodus, corroborating a possible tropic chain.[12]

- One of the most complex organism interactions on the Posidonia Shale were the crinoid megarafts that grouped a wide variety of animals, creating large floating ecosystems.[13] The largest megaraft found measured 18 metres (59 ft), and is based on an Agathoxylon trunk, where different animals were attached.[13] The first attached animals would have been the growing community of oysters, bivalves and crinoids, that would add a small weight to the raft (about 800 kilograms (1,800 lb)).[13] The presence of these megarafts were in part possible due to the absence of marine wood worms which destroy tree logs in less than 3 years along with the absence of modern raft wood predators (that appeared on the Bathonian). These rafts could last up to 5 years, which is the main reason the crinoids attached were able to reach huge sizes.[13] These rafts were likely also essential to distribute animals along sea basins.[13] Seirocrinus & Pentacrinites were some of the main crinoid colonizers of the floating rafts.[14] Seirocrinus is the main representative of the pelagic crinoids, being among the longest animals known, reaching 26 m long in the largest documented specimen.[14] The ecology of the genus is widely known, with it being known that the smallest stems were among the first animals to colonize the rafts, with at least 2 generations of crinoids found per raft, where the hydrodynamic changes of the log influenced the settlement of the crinoids.[14] It is believed that Seirocrinus underwent seasonal reproduction linked to monsoonal conditions that sent new logs to the sea.[14] The large crinoids would have feed on pelagic micronutrients, and after the log fell to the bottom, all of the colony would have died.[14]
- Thoracic barnacles of the genus Toarcolepas became the oldest epiplanktonic barnacle known in the fossil record, probably motivated by the appearance of the giant crinoid rafts. It has been found in situ associated with fossil wood.[15]

- The shark Hybodus includes specimens with gastric contents full of belemnnite fragments.[16] This implies active predatory behaviour by the genus towards several kinds of belemnnites, such as Youngibelus.[16]
- A speiballen (a regurgitated mass composed of indigestible stomach contents) had been found in the Holzmaden quarry.[17] The speiballen measures 285 mm in length with a diameter of 160 mm, and consists of 4 members of the genus Dapedium (Dapediidae) and a jaw identified as Lepidotes (Semionotidae).[17] The maker of this speiballen has been suggested to be a shark like Hybodus, an actinopterygian or a marine reptile.[17]
- A specimen of Pachycormus has been found with stomach contents that include hooks similar to the ones found on genera like Clarkeiteuthis.[18]
- Another specimen of Pachycormus macropterus preserves an ammonite inside its gut, likely swallowed by accident and directly responsible for the fish’s death.[19]
- SMNS 51144 (Saurostomus esocinus) was found with Chondrites sp. burrows in the abdominal cavity, what indicates a possible opportunistic scavenger. Other Chondrites sp. includes SMNS 17500 and MHH 1981/25 (Stenopterygius uniter) that either suggest the ichthyosaurs were preserved immediately below one such bioturbation horizon or scavenger association.[8]
- The known specimens of Toarcocephalus are evidence of successful predation events, as the head of one was isolated, likely as product of a decapitation, with another preserved within a regurgitated mass.[20]
- One of the most emblematic finds of the formation is that of a mother Stenopterygius giving birth to live young. While specimens have been found with embryos, the bones of these embryos are scattered partly beyond the body limits of the mother.[21] There have been various theories about this scenario: either the bones of embryos had been deposited before the body of the adult went to the sea floor, or in the ichthyosaurs’ last moments where it sank to the bottom and may have given untimely birth to some of the foetuses, and finally another option follows post mortem hydrostatic pressure being too high to be prevented by the body, exploding or expelling its embryos.[22]
- The specimen SMNS 53363 (Eurhinosaurus?) from Aichelberg was found with two encrusted large oysters (Liostrea) on the right pterygoid, considered to be part of a reef stage over bones.[8]
- SMNS 80234 (Stenopterygius quadriscissus) represents another female with embryos, yet also shows ribs broken perimortem that may represent either intraspecific aggression or a predation attempt. This specimen has several taxa associated: ammonite aptychi, two ophiuroids (Sinosura brodiei) and a articulated echinoid (Diademopsis crinifera) indicate a short-lived deadfall community.[8]
- SMNS 81841 (Stenopterygius quadriscissus) represents one of the clearest examples of deadfall communities described in the formation: the skeleton is associated with serpulids surrounded by a mass of disarticulated ophiuroid remains, indeterminate echinoid tests, an isolated crinoid ossicle, the byssate bivalve Oxytoma inaequivalvis, the pectinid Propeamussium pumilus, Eopecten strionatis, Plagiostoma sp., Meleagrinella sp., "Cucullaea" muensteri, with the genera Parainoceramya dubia and Liostrea associated with the carcass.[23] As many of these bivalves show overgrowth the community likely persisted for some time.[23] Fossil traces of Gastrochaenolites isp. attributed to mechanical bivalve borers are abundant implicating prolonged exposure of the skeleton on the seafloor.[23]
- SMNS 81719 (Stenopterygius uniter) includes Liostrea, Propeamussium pumilus, Plagiostoma sp. and Parainoceramya dubia, with other invertebrates found (?) not being part of the deadfall community, such as several ammonites and Parainoceramya valves, being stratigraphically below the specimen.[8] This specimen includes also traces of scavenging activity, possibly by crustaceans.[8]
- SMNS 80113, (Stenopterygius triscissus) was found populated by Parainoceramya, a specimen of Eopecten strionatis and an unexpected specimen of the small infaunal lucinid Mesomiltha pumila, equivocal evidence for the sulfophilic stage.[8]
- Local ichthyosaur soft tissues include skin enough well preserved to infer coloration and appearance on the living animal, as well evidence for homeothermy and crypsis.[24]
- Gut contents of the local pterosaurs are known: Campylognathoides preserves hooks of the coleoid Clarkeiteuthis (therefore being the one of the few teuthophagous pterosaurs), while Dorygnathus preserves remains of Leptolepis.[25]
Microbial activity
[edit]Non-fenestrate stromatolite crusts formed in aphotic deep-water environments during intervals of very low sedimentation are recovered in places such as Teufelsgraben, Hetzles.[26] The stromatolites of this region have evidence of live on a deeper shelf environment with a quietwater deposit which suffered repeated phases of stagnant bottom waters, where a depth water habitat developed, probably at more than 100 meters depth.[26] There is a thin, southern widespread stromatolite crust on the top of the Sachrang Formation, called "Wittelshofener Bank", that has made researchers rethink the depth of the major southern basin of the formation, where the absence of phototrophic calcareous benthic organisms (probably due to the lack of light) shows the depth of the basin.[26] On the "Wittelshofener Bank" there is also the only occurrence of ooids, presumably formed in the same deep-water environment.[26]
Color key
|
Notes Uncertain or tentative taxa are in small text; |
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Possible traces of Microbial Activity |
Probably related with archaeal activity.[26] Although Frutexites is a cryptic microfossil and an important element of many deep water stromatolites, with an inorganic origin proposed it was interpreted as dendritic shrubs of purely inorganic growth of aragonitic crystals, but it also resembles shrubs of the cyanobacteria Angulocellularia.[26] In the Posidonia Shale a cryptoendopelitic mode of life is assumed, being only possible for heterotrophic bacteria or fungi.[26] As seen in the stromatolites of the Posidonia Shale, Frutexites acted mainly as a dweller or secondary binder of the deep-water stromatolites, not as their major constructor.[26] |
Cyanobacteria
[edit]Genus | Species | Location | Material | Notes |
---|---|---|---|---|
|
|
Crypt laminites |
A cyanobacteria, member of the family Oscillatoriales. Girvanella is almost rock-forming in the lower and upper levels, and is very common, but can only rarely be detected in the bituminous clay marl slate due to preservation reasons.[27] |
Rhizaria
[edit]Foraminifera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells |
A benthic foraminiferan, type member of the family Ammodiscinae inside Ammodiscina. |
||
|
|
Shells |
A benthic foraminiferan, member of Psammosphaerinae inside the family Psammosphaeridae. |
||
|
|
Shells |
A benthic foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
![]() | |
|
|
Shells |
A benthic foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, type member of Cornuspiridae inside the family Cornuspirida (Lagenina). Round-spiral shell morphology |
||
|
|
Shells |
A benthic foraminiferan, member of the family Cornuspirinae inside Cornuspiridae. |
||
|
|
Shells |
A benthic foraminiferan, member of Nodosariidae inside the family Nodosariacea (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, type member of Frondiculariinae inside the family Nodosariidae (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of the family Usbekistaniinae inside Ammodiscidae. |
||
|
|
Shells |
A benthic foraminiferan, type member of Ichthyolariidae inside the family Lagenina. |
||
|
|
Shells |
A benthic foraminiferan, member of the family Involutinidae inside Involutinae. |
||
|
|
Shells |
A benthic foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, type member of Lingulininae inside the family Nodosariidae (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Marginulininae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Nodosariidae inside the family Nodosariacea (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Nodosariidae inside the family Nodosariacea (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of Ceratobuliminidae inside the family Robertinida. |
||
|
|
Shells |
A benthic foraminiferan, member of Lenticulininae inside the family Vaginulinida (Lagenina). |
||
|
|
Shells |
A benthic foraminiferan, member of the family Spiroplectammininae inside Spiroplectamminidae. |
||
|
|
Shells |
A benthic foraminiferan, member of the family Involutinidae inside Involutinae. |
||
|
|
Shells |
A benthic foraminiferan, type member of Vaginulinidae inside the family Vaginulinida (Lagenina). |
Dinoflagellata
[edit]Dinoflagellate cysts
[edit]The evolutionary burst of the Toarcian dinoflagellates led the first appearance and rapid radiation of the Phallocystaceae (Susainium, Parvocysta, Phallocysta, Moesiodinium and related forms).[30] This occurred at the time of a widespread Lower Toarcian bituminous anoxia-derived shale, which is recovered from the Posidonienschiefer, Pozzale, Italy, Asturias, Spain, Bornholm, Denmark, the Lusitanian Basin of Portugal, the Jet Rock Formation in Yorkshire and to the "Schistes Carton" in northern France. Whether there is a causal connection in this co-occurrence of Phallocystaceae and bituminous facies is a problem still to be resolved. This family has its acme in diversity and quantity in the latest Toarcian and became less important in the Aalenian.[30]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Cysts |
A dinoflagellate cyst from the family Apodiniaceae. An ectoparasitic dinoflagellate, whose hosts are normally tunicates |
||
|
|
Cysts |
A dinoflagellate cyst from the family Scriniocassiaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Scriniocassiaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Comparodiniaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Scriniocassiaceae. |
||
|
|
Cysts |
A dinoflagellate cyst, type member of Luehndeoideae. Luehndea spinosa is common in the middle layers of the lower Sachrang Formation, while restricted to certain areas in younger ones.[34] |
||
|
|
Cysts |
A dinoflagellate cyst, type member of Mancodiniaceae. |
||
|
|
Cysts |
A dinoflagellate cyst, member of Dinophyceae. |
||
|
|
Cysts |
A dinoflagellate cyst, member of Dollidiniaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Heterocapsaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Heterocapsaceae. |
||
|
|
Cysts |
A dinoflagellate cyst, member of Dinophyceae of the family Nannoceratopsiaceae. In the Lias Epsilon Interval (Lowermost Toarcian), most of the assemblages are dominated by Nannoceratopsis gracilis. Nannoceratopsis senex becomes highly abundant until the uppermost Tenuicostatum.[34] |
||
|
|
Cysts |
A dinoflagellate cyst from the family Scriniocassiaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Gonyaulacaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Heterocapsaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Heterocapsaceae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Phallocysteae. |
||
|
|
Cysts |
A dinoflagellate cyst from the family Comparodiniaceae. |
Algae
[edit]The Posidonia Shale preserves an abundant variety of algae, such as the genus of colonial green algae Botryococcus, or the unicellular algal bodies Tasmanites, and other small examples. Algae are a good reference for changes on the oxygen conditions along the Toarcian.[37]
Algal acritarchs
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Cysts |
An acritarch probably of algal origin. Related to open shelf deposits |
||
|
|
Cysts |
An acritarch probably of algal origin. Its fossils indicate nearshore or estuarine to shallow lagoon and/or slightly brackish-water environments. |
||
|
|
Cysts |
An acritarch probably of algal origin. Related to open shelf deposits |
||
|
|
Cysts |
An acritarch probably of algal origin. It is abundant in most of the samples studied from the Sachrang Formation, being nearly the 50% of the acritarch fraction on some locations. |
Haptophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Coccoliths |
Type member of the family Biscutaceae inside Parhabdolithaceae. |
||
|
|
Coccoliths |
A member of the family Watznaueriaceae inside Watznaueriales. |
||
|
|
Coccoliths |
Member of the family Calyculaceae inside Parhabdolithaceae. |
||
|
|
Coccoliths |
A member of the family Chiastozygaceae inside Eiffellithales. |
||
|
|
Coccoliths |
Member of the family Parhabdolithaceae inside Stephanolithiales. |
||
|
|
Coccoliths |
Member of the family Biscutaceae inside Parhabdolithaceae. |
||
|
|
Coccoliths |
A member of the family Watznaueriaceae inside Watznaueriales. |
||
|
|
Coccoliths |
A member of the family Parhabdolithaceae inside Stephanolithiales. The abundance drop of M. jansae further characterises the T-OAE perturbation, where it becomes the dominant genus in most of the Saxony Basin. |
||
|
|
Coccoliths |
Member of the family Parhabdolithaceae inside Stephanolithiales. |
||
|
|
Coccoliths |
incertae Sedis |
||
|
|
Coccoliths |
Type member of the family Schizosphaerellaceae inside Parhabdolithaceae. Towards the Pliensbachian-Toarcian extincion this genus decreases in abundance and size. |
||
|
|
Coccoliths |
Member of the family Biscutaceae inside Podorhabdales. |
||
|
|
Coccoliths |
Member of the family Biscutaceae inside Podorhabdales. |
||
|
|
Coccoliths |
A member of the family Chiastozygaceae inside Eiffellithales. |
Chlorophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Cysts |
Type member of the family Botryococcaceae inside Trebouxiales. This genus usually inhabits freshwater or deltaic environments. |
![]() | |
|
|
Cysts |
A member of Prasinophyceae. A genus common in green clays and other upper strata of the formation. |
||
|
|
Cysts |
A member of the family Pyramimonadales inside Prasinophyceae. Often found in basinal deposits. |
||
|
|
Cysts |
A member of Gonyaulacaceae inside Dinophyceae. |
||
|
|
Cysts |
A member of the Prasinophyceae. Often found in basinal deposits. |
||
|
|
Cysts |
A member of the family Halosphaeraceae inside Chlorodendrales. Often found in basinal deposits. |
||
|
|
Cysts |
A member of the Prasinophyceae. Often found in basinal deposits. |
||
|
|
Cysts |
A member of the Prasinophyceae. Often found in basinal deposits |
||
|
|
Cysts |
A member of the Prasinophyceae. Often found in basinal deposits |
||
|
|
Cysts |
A member of Peridiniaceae inside Dinophyceae. |
||
|
|
Cysts |
A member of Prasinophyceae. It is the main genus present within silt and sand horizons, tending to be absent in shale layers. |
||
|
|
Cysts |
A member of Dinophyceae. |
||
|
|
Cysts |
A member of Prasinophyceae. A genus common in green clays and other upper strata of the formation. |
||
|
|
Cysts |
A member of the Prasinophyceae. Often found in basinal deposits |
Fungi
[edit]Fungal spores, hyphae and indeterminate remains are a rare element of the otherwise open marine deposits of the Posidonienschiefer formation, but were recovered at Dormettingen.[46] These fungal remains are composed mostly of indeterminate spores and indicate oxygenated environments and suitable transportation by rivers.[46]
Incertae sedis
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Fungal patches in ammonite shells and belemnite rostra |
A marine parasitoid fungus of uncertain relationship, linked with shells of marine invertebrates. The extant Ostracoblabe implexa is usually found associated with bivalve shells as an external parasitoid. Beyond this genus, other fungal remains include indeterminate endolithic fungi linked with microbial mats. |
Ichnofossils
[edit]The major ichnological analyses of the Posidonian Shale come from Dotternhausen/Dormettingen, where the ichnogenus Phymatoderma formed the so-called Tafelfleins and Seegrasschiefer.[48] The Tafelflein bed was deposited under anoxic bottom and pore water, where a recover of oxygen allow the Phymatoderma-producers return.[48] The two organic-rich layers (Tafelfleins and Seegrasschiefer) are characterized by the dense occurrence of trace fossils such as Chondrites and Phymatoderma, done episodically due to the fall of the oxygen levels.[48] The coeval more nearshore Swiss deposits referred Posidonian Shale (Rietheim Member) hosted similar trace fossils to those recovered on SW Germany.[48] Ichnofossils in this setting apparently evolved faster to more oxic-to-dysoxic bottom waters.[48] At Unken, laminated deposits of red limestone suggest well oxygenated active waters (as they lack shale), where high amounts of Chondrites are found.[40]
Genus | Species | Location | Material | Made By | Images |
---|---|---|---|---|---|
|
|
Burrowing and track ichnofossils |
|
| |
|
|
Borings on bones |
|
![]() | |
|
|
Burrowing and track ichnofossils. |
|
![]() | |
|
|
Burrowing and track ichnofossils. |
|||
|
|
Burrowing and track ichnofossils |
|
![]() | |
|
|
Burrowing and track ichnofossils |
|
![]() | |
|
|
Burrowing and track ichnofossils. |
|
![]() |
Invertebrata
[edit]Porifera
[edit]In the non-bituminous facies located on Obereggenen im Breisgau (Shore of the Black Forest High), especially the lower semicelatum subzone, pyritized individual needles of silica sponges (Demospongiae and Hexactinellida) are found, rarely on pelagic layers to very often on the low depth marine deposits.[27] They are usually associated with radiolarian stone cores. In Dusslingen and Reutlingen, these sponge needles are sometimes barytized in phosphorites of the Haskerense subzone and are much more common here than in any other zone of the Lower Toarcian. These needles are absent in the bituminous horizons of the entire Lower Toarcian.[27] Increased amounts of sponge needles (dominated by Hexactinellida) are also found on the arenaceous facies of the nearshore unit that is the Unken member, being the only section if its region hosts them, probably due to be an active and well oxygenated bottom.[40] The location of this member as a possible bay on the south of the vindelician land probably allow to the development of more pre-Toarcian AOE conditions, hence the presence of biota otherwise rare on bituminous layers.[40]
Annelida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Isolated Tubes |
A sessile, marine annelid tube worm of the family Serpulidae. Presumably these specimens have fallen from their growth areas.[27] |
![]() | |
|
|
Scolecodonts |
A polychaete of the family Dorvilleidae inside Eunicida. Eunicidan species with prionognath jaws, absent in bituminous layers |
Lophophorata
[edit]Bryozoa
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Colonial imprints |
A Bereniceidae Stenolaematan. The colonies’ form is extremely characteristic, forming curved fans |
||
|
|
Colonial imprints |
A Oncousoeciidae Stenolaematan. Colonies consists of bands that are the same width throughout their entire extent and can branch. |
![]() |
Brachiopoda
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells |
|||
|
|
Shells |
A Lingulidae rhynchonellatan. Associations of bioturbating infauna are dominated in certain sections by Palaeonucula/Lingula aggregations, developed under longer-term oxygenated conditions within the substrate and bottom waters.[57] |
||
|
|
Shells |
A Discinidae rhynchonellatan. This genus was found to have a planktotrophic larval stage that adapted while growing to the local redox boundary. When this fluctuated near the sediment–water interface and oxygen availability prevailed, it allowed benthic colonization. It is found in associations with Grammatodon and Pseudomytiloides.[57] |
||
|
|
Shells |
A Rhynchonellidae rhynchonellatan. Found associated with Plicatula in long-term well-oxygenated conditions within the substrate and bottom waters.[57] |
||
|
|
Shells |
|||
|
|
Shells |
Mollusca
[edit]Bivalvia
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
Dotternhausen |
Shells |
|||
|
All the Formation |
Shells |
A posidoniid ostreoidan. It is the type fossil of the Sachrang Formation. Originally it was named "Posidonia bronni", thought to be a new genus, and the strata were denominated the Posidonia layers after it. Years later it turned out to be a junior synonym of Bositra, and thus it was reassigned. However, the name of the layers was retained. The habitat and mode of life of Bositra has been debated for more than a century. There have been different interpretations, such as a pseudoplanktonic organism,[59] a benthic organism living on the open marine floor, where it was the main inhabitant of the basinal settings, and a hybrid mode, where it had a life cycle with holopelagic reproduction controlled by changes in oxygen levels, and even a chemosymbiotic lifestyle with the large crinoid rafts being the main “safe havens” to evade anoxic events. Various hypotheses along the years led to a large study in 1998, where the size/frequency distribution, the density of growth through lines related to the shell size and the position of the redox boundary by total organic carbon diagrams revealed that Bositra probably had a benthic mode of life.[60] |
![]() | |
|
|
Shells |
A pectinoid scallop. The presence of this genus along endobenthic and epibenthic bivalves, which are absent farther up the section, suggest a delayed overstepping of anoxic bottom waters on the Altdorf High.[61] |
||
|
|
Shells |
![]() | ||
|
|
Shells |
A cucullaeid clam. |
||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
A bakevelliid mud oyster. |
||
|
|
Shells |
|||
|
|
Shells |
A Grammatodontinae clam. This genus had a lecithotrophic and planktotrophic larval development.[57] |
||
|
|
Shells |
![]() | ||
|
|
Shells |
| ||
|
|
Shells |
![]() | ||
|
|
Shells |
|||
|
|
Shells |
An inoceramid clam. |
||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
An inoceramid clam. |
| |
|
|
Shells |
|||
|
|
Shells |
![]() | ||
|
|
Shells |
|||
|
|
Shells |
A plicatulid mud scallop. |
||
|
|
Shells |
An oxytomid scallop. Found mostly in the "Dactylioceras-Monotis-Bank", a deposit derived from large scale tectonic events on the Bohemian coastline |
||
|
|
Shells |
A propeamussiid mud scallop. |
![]() | |
|
|
Shells |
|||
|
|
Shells |
An inoceramid clam. Being the second most common genus of bivalve in the Formation, it has been subject to several studies in regards to its ecological niche, similar to Bositra. Several opinions include a pseudoplanktonic-only organism able to live in the open sea, or a benthic-only organism. Within the 1998 evaluation with Bositra, was found that this genus probably had a benthic juvenile stage that transitioned to a faculatively pseudoplanktonic adult.[60] |
![]() | |
|
|
Shells |
A Pteriidaeoid wing-oyster. |
||
|
|
Shells |
A Clam, type member of the family Solemyidae inside Solemyida. |
![]() | |
|
|
Shells |
A "posidoniid" ostreoidan. Another Genera mistaken with "Posidonia bronni". |
![]() | |
|
|
Shells |
A mactromyid clam. |
Gastropoda
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells |
A Eucyclidae sea snail. |
||
|
|
Shells |
A coelodiscid sea snail. Is the oldest known holoplanktonic gastropod and the most abundant snail in the formation, thanks to a bilaterally symmetrical shell as an adaption to active swimming.[67] |
![]() | |
|
|
Shells |
A Eucyclidae sea snail. |
| |
|
|
Shells |
![]() | ||
|
|
Shells |
A Pleurotomariidae sea snail. |
![]() | |
|
|
Shells |
A possible pterotracheid sea Slug. Dubious affinity.[68] |
| |
|
|
Shells |
A Procerithiidae sea snail. |
||
|
|
Shells |
A snail of uncertain placement. |
||
|
|
Shells |
A coelodiscid sea snail. Possible holoplanktonic gastropod.[67] |
||
|
|
Shells |
A zygopleurid sea snail. |
![]() |
Cephalopoda
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells |
|||
|
|
Aptychi |
Ammonite internal moulds of uncertain affinity. |
||
|
|
Phragmocones |
|||
|
|
Various complete and nearly complete specimens |
A diplobelid coleoid. Some specimens instead belong to Clarkeiteuthis (=Phragmoteuthis) conocauda. |
||
|
|
Pyritized fragments |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
A nautilid. Two referred specimens, identified as Nautilus spp. from Holzmaden were found encrusted with Serpulids and Bryozoans.[79] |
![]() | |
|
|
Phragmocones |
A belemnotheutid belemnite. Chitinobelus rostrum was composed of aragonite with organic material, while normal belemnites had calcite. |
||
|
|
Phragmocones |
|||
|
|
Various complete and nearly complete specimens |
| ||
|
|
Shells |
|||
|
|
Shells |
Type genus of Coeloceratidae. |
||
|
|
Shells |
A dactylioceratid ammonite. It is common within the bituminous marls (incorrectly designated as "Wilder Schiefer"). |
||
|
|
Aptychi |
Ammonite internal moulds of uncertain affinity. |
![]() | |
|
|
Shells |
|||
|
|
Shells |
![]() | ||
|
|
Phragmocones |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
A hildoceratid ammonite. The co-occurrence in Altdorf of boreal (Pseudolioceras) and Tethyan faunal elements (Frechiella) is striking, suggesting clear connection with both regions.[86] |
||
|
|
Shells |
|||
|
|
Various complete and nearly complete specimens |
A geopeltid loligosepiid (Vampyromorpha). Related to the modern vampire squid. Gladius with weakly arcuated hyperbolar zones. |
![]() | |
|
|
Various complete and nearly complete specimens |
A possible early Cuttlefish. It is one of the most important cephalopod fossils in the Sachrang Formation, due to having some of the earliest examples of pigments found on any species, also one of the first historically.[90] The pigments are preserved on various specimens with Eumelanin related to its ink sacs and including even phosphatized musculature.[10] |
||
|
|
Shells |
![]() | ||
|
|
Shells |
|||
|
|
Shells |
|||
|
Shells |
| |||
|
|
Shells |
|||
|
|
Various complete and nearly complete specimens |
A loligosepiid loligosepiidan (Vampyromorpha). Related to the modern vampire squid. Gladii of Loligosepia can be distinguished from Jeletzkyteuthis by the transition lateral field/hyperbolar zone. |
||
|
|
Shells |
|||
|
|
Single specimen with tissue |
Type genus of Lioteuthididae inside Vampyromorphida. The taxonomic position of Lioteuthis is uncertain, although the fins reaching the proximal gladius section and the smooth median field suggest affinity to the Prototeuthididae[92] |
||
|
|
Shells |
|||
|
|
Various complete and nearly complete specimens |
A loligosepiid loligosepiidan (Vampyromorpha).[94] The Loligosepiidae are believed to be ancestral to the modern vampire squid, Vampyroteuthis infernalis.[87] Hooklets in food residues in the posterior mantle indicate that Loligosepia preyed upon belemnites.[93] |
| |
|
|
Shells |
A lytoceratid ammonite. Lytoceras is relatively big, reaching nearly 50 cm in diameter. |
||
|
|
Shells |
![]() | ||
|
|
Phragmocones |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Various complete and nearly complete specimens |
A diplobelid coleoid. Has been confused with Acrocoelites tripartitus, hence the species name. |
||
|
|
Hooks |
Incertae sedis belemnites. |
||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Various complete and nearly complete specimens |
A geopeltid loligosepiidan (Vampyromorpha). Related to the modern vampire squid. It is distinguished from Geoteuthis and Loligosepia by its median rib: this rib forms a narrow ridge between two narrow grooves. Probably bore fins similar to modern Vampyroteuthis.[11] |
||
|
|
Shells |
|||
|
|
Partial specimens with tissue |
A plesioteuthidid prototeuthidinan (Vampyromorpha). was originally described as "Geoteuthis" sagittata. |
||
|
|
Various complete and nearly complete specimens |
![]() | ||
|
|
Shells |
|||
|
|
Shells |
A phylloceratid ammonite. The largest ammonite found in the Posidonienschiefer comes from the Ohmden quarry, and is a specimen of Phylloceras heterophyllum with a diameter of 87 cm.[71] |
![]() | |
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Shells |
|||
|
|
Phragmocones |
![]() | ||
|
|
MNHNL TI024, complete specimen |
|||
|
|
Phragmocones |
|||
|
|
Various complete and nearly complete specimens |
A sueviteuthidid coleoid. Sueviteuthis had at least six arms with rather simple hooks, similar to the present of the genus Phragmoteuthis. |
||
|
|
Various complete and nearly complete specimens |
![]() | ||
|
|
Shells |
| ||
|
|
Shell |
|||
|
|
Phragmocones |
A megateuthidid belemnite. Includes very large specimens |
![]() | |
|
|
Shells |
Crustacea
[edit]Cycloidea
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Incomplete carapace |
The first cycloid arthropod from the Jurassic, from the family Halicynidae inside Cycloidea.[102] |
Ostracoda
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Valves |
A marine ostracod of the family Bairdiidae inside Bairdioidea. |
||
|
|
Valves |
A marine ostracod of the family Bairdiidae inside Bairdioidea. |
||
|
|
Valves |
A marine ostracod of the family Cytherellidae inside Platycopida. |
||
|
|
Valves |
A marine ostracod of the family Cytherellidae inside Platycopida. |
||
|
|
Valves |
A marine ostracod of the family Cytheruridae inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Healdiidae inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Protostomia. |
||
|
|
Valves |
A marine ostracod of the family Protocytheridae inside Podocopida. |
||
|
|
Valves |
A marine ostracod, member of the family Pontocyprididae inside Podocopida. |
||
|
|
Valves |
A marine ostracod, member of the family Macrocyprididae inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Bythocytheridae inside Cladocopina. |
||
|
|
Valves |
A marine ostracod, member of the family Healdiidae inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Healdiidae inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Polycopidae inside Cladocopina. |
||
|
|
Valves |
A marine ostracod of the family Praeschuleridea inside Podocopida. |
||
|
|
Valves |
A marine ostracod of the family Healdiidae inside Podocopida. |
||
|
|
Valves |
A marine ostracod, incertae sedis inside Podocopida. |
Malacostraca
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
An aegerid decapod. |
||
|
Single complete specimen in late larval stage |
The specimen reported represents the oldest fossil record of an achelate larva, and the first representative of achelates in the Posidonia Shale. This larva shares similarities with the late Jurassic genus Cancrinos. It is also among the oldest examples of crustaceans which possibly could have lived as part of the plankton.[109] |
| ||
|
|
Various complete and nearly complete specimens |
A penaeid decapod. |
| |
|
|
Various complete and nearly complete specimens |
An erymid decapod. |
||
|
|
Various complete and nearly complete specimens |
Type genus of the family Erymidae. Originally was placed within Glyphea as G. amalthei, informally used by Quenstedt and housed in the Museum Naturkunde in Württemberg. A series of later revisions proved it was a different genus.[113] |
| |
|
|
Various complete and nearly complete specimens |
A coleiid decapod. Was confussed with Proeryon hartmanni specimens. Specimens from Gomaringen are the first known with preserved ommatidia.[115] |
||
|
|
Isolated Chelae |
A decapod of the family Glypheidae. |
||
|
|
Various complete and nearly complete specimens |
A decapod of the family Mecochiridae. |
||
|
|
Partial specimens. |
A penaeid decapod. |
||
|
|
Various complete and nearly complete specimens |
An erymid decapod. |
| |
|
|
Single specimen inside an ammonite shell. |
A hermit crab of the family Paguridae. This specimen was found inside an ammonite shell, probably looking to evade anoxic conditions or predators. |
||
|
|
Various complete and nearly complete specimens |
A spiny lobster of the family Palinuridae |
||
|
|
Various complete and nearly complete specimens |
A coleiid decapod. The second largest decapod from the formation, P. giganteus, reaches a larger size than most other polychelidans, growing up to 15 cm.[121] |
| |
|
|
Single Chela |
An erymid decapod. It was erroneously reported from the Late Toarcian. |
||
|
|
Single Incomplete specimen |
A possible mantis shrimp. |
![]() | |
|
|
Various complete and nearly complete specimens |
A gregarious polychelidan Lobster. specimens of Tonneleryon schweigerti were recovered generally in clusters of several individuals, due to that and the disposition of the specimens these probably represent mass-mortality assemblages and suggest this species was gregarious.[111] |
||
Uncina[123] |
|
|
Various complete and nearly complete specimens |
An astacidean decapod of the family Uncinidae. Uncina posidoniae is among the largest known Jurassic crustaceans andis also the largest representative of the genus.[123] |
|
Thoracica
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Numerous disarticulated individuals, associated with fossil wood.[15] |
A phosphatic-shelled barnacle of the family Eolepadidae.[15] Toarcolepas is provisionally interpreted as the oldest epiplanktonic barnacle known, and is thought to have lived attached to floating driftwood.[15] |
![]() |
Arachnida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Single incomplete specimen. |
The type genus of the family Liassoscorpionididae, probably related to Mesophonoidea.[125] |
![]() |
Insecta
[edit]Incertae sedis
[edit]Insects are common terrestrial animals that were probably washed into the sea due to monsoon conditions present on the Sachrang Formation.[126]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
Incertae sedis |
||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens | |||
|
|
Multiple specimens |
Notoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
Grylloblattidans of the family Geinitziidae. |
![]() | |
|
|
Multiple specimens |
Eoblattida
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
An Eoblattidan of the family Blattogryllidae. |
Odonatoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
An Odonatopteran (ancient winged insects) from the family Protomyrmeleontidae. |
Odonata
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Campterophlebia[127][131] |
|
|
Multiple specimens | A dragonfly of the family Campterophlebiidae. The largest Early Jurassic insect known, with a wingspan up to 20 cm.[132] | |
Elattogomphus[127] |
|
|
Multiple specimens | A dragonfly of the family Liassogomphidae. | |
Ensphingophlebia[127] |
|
|
Multiple specimens | A dragonfly of the family Sphenophlebiidae. | |
Gallodorsettia[133] |
|
|
Multiple specimens | A dragonfly of the family Campterophlebiidae. | |
Henrotayia[134] |
|
|
Multiple specimens | A dragonfly of the family Henrotayiidae. | |
Heterothemis[127] |
|
|
Multiple specimens | A dragonfly of the family Heterophlebiidae. | |
Heterophlebia[127][136] |
|
|
Multiple specimens | A dragonfly of the family Heterophlebiidae. | |
Liassostenophlebia[127] |
|
|
Multiple specimens | Incertae sedis | |
Mesoepiophlebia[137] |
|
|
Multiple specimens | A dragonfly of the family Sphenophlebiidae. | |
Myopophlebia[127][137] |
|
|
Multiple specimens | A dragonfly of the family Myopophlebiidae. | |
Necrogomphus[127][131] |
|
|
Multiple specimens | A dragonfly of the family Liassogomphidae. | |
Paraheterophlebia[127][137] |
|
|
Multiple specimens | A dragonfly of the family Myopophlebiidae. | |
Paraplagiophlebia[137] |
|
|
Multiple specimens | A dragonfly of the family Myopophlebiidae. | |
Phthitogomphus[127][137] |
|
|
Multiple specimens | A dragonfly of the family Liassogomphidae. | |
Plagiophlebia[127] |
|
|
Multiple specimens | A dragonfly of the family Heterophlebiidae. | |
Proinogomphus[127] |
|
|
Multiple specimens | A dragonfly of the family Liassogomphidae. | |
Sphenophlebia[127][139] |
|
|
Multiple specimens | A dragonfly of the family Sphenophlebiidae.[140] | |
Strongylogomphus[127][137] |
|
|
Multiple specimens | A dragonfly of the family Myopophlebiidae. | |
Syrrhoe[127] |
|
|
Multiple specimens | Incertae sedis |
Orthoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Acridiopsis[127] |
|
|
Multiple specimens | A short-horned grasshopper of the family Acrididae. | ![]() |
Chresmodella[127] |
|
|
Multiple specimens | A stick insect of the family Aerophasmidae. | |
Elcana[141] |
|
|
Multiple specimens | A grasshopper of the family Elcanidae. | |
Liadolocusta[127] |
|
|
Multiple specimens | Grasshoppers of the family Locustopsidae. | |
Liassogrylloides[127] |
|
|
Multiple specimens | Incertae sedis | |
Locustopsis[127] |
|
|
Multiple specimens | Grasshoppers of the family Locustopsidae. | |
Panorpidium[127] |
|
|
Multiple specimens | A grasshopper of the family Elcanidae. | ![]() |
Prophilaenites[127] |
|
|
Multiple specimens | Incertae sedis | |
Protogryllus[127] |
|
|
Multiple specimens | A grasshopper of the family Protogryllidae. | |
Schesslitziella[142][143] |
|
|
Multiple specimens | A stick insect of the family Aerophasmidae. |
Dictyoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Blattula[127][144] |
|
|
Multiple specimens | A cockroach of the family Blattulidae. | |
Caloblattina[127][144] |
|
|
Multiple specimens | A cockroach of the family Caloblattinidae. | |
Liadoblattina[144] |
|
|
Multiple specimens | A cockroach of the family Raphidiomimidae. | |
Mesoblattina[144] |
|
|
Multiple specimens | A cockroach of the family Mesoblattinidae. | |
Ptyctoblattina[127][144] |
|
|
Multiple specimens | A cockroach of the family Raphidiomimidae. |
Hemiptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Archijassus[127] |
|
|
Multiple specimens | A Planthopper of the family Archijassidae. | |
Compactofulgoridium[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Corynecoris[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | |
Deraiocoris[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | |
Elasmoscelidium[127] |
|
|
Multiple specimens | Incertae sedis | |
Ensphingocoris[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | ![]() |
Entomecoris[127] |
|
|
Multiple specimens | ||
Eogerridium[127] |
|
|
Multiple specimens | ||
Engynabis[127] |
|
|
Multiple specimens | ||
Eurynotis[127] |
|
|
Multiple specimens | ||
Fulgoridium[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | ![]() |
Fulgoridulum[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Indutionomarus[145] |
|
|
Multiple specimens | A coleorrhynchan of the family Progonocimicidae. | |
Macropterocoris[127] |
|
|
Multiple specimens | A Shore bug (Saldidae) of the family Archegocimicidae. | |
Margaroptilon[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Megalocoris[127] |
|
|
Multiple specimens | Saldidae Incertae sedis | |
Metafulgoridium[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Ophthalmocoris[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | |
Procercopis[127] |
|
|
Multiple specimens | A froghopper of the family Procercopidae. | |
Procerofulgoridium[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Productofulgoridium[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Pronabis[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | |
Somatocoris[127] |
|
|
Multiple specimens | A shore bug (Saldidae) of the family Archegocimicidae. | |
Tetrafulgoria[127] |
|
|
Multiple specimens | Planthoppers of the family Fulgoridiidae. | |
Xulsigia[146] |
|
|
Multiple specimens | A sternorrhynchan of the family Pincombeomorpha. Has been proposed to be within its own family, Xulsigiidae. |
Hymenoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Liadobracona[147] |
|
|
Multiple specimens | A wasp of the family Ephialtitidae. | |
Pseudoxyelocerus[148] |
|
|
Multiple specimens | A wood wasp of the family Xyelotomidae. |
![]() |
Symphytopterus[149] |
|
|
Multiple specimens |
A wasp of the family Ephialtitidae. |
|
Thilopterus[150] |
|
|
Multiple specimens |
A wasp of the family Ephialtitidae. |
|
Xyelula[150] |
|
|
Multiple specimens | A cephoidean of the family Sepulcidae. |
![]() |
Neuroptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Actinophlebia[151] |
|
|
Multiple specimens | A lacewing of the family Prohemerobiidae. | |
Actinoptilon[151] |
|
|
Multiple specimens | A silky lacewing of the family Psychopsidae. | ![]() |
Epipanfilovia[127] |
|
|
Multiple specimens | A lacewing of the family Panfiloviidae. | |
Glottopteryx[127][151] |
|
|
Multiple specimens | A lacewing of uncertain placement. | |
Liassopsychops[127][152] |
|
|
Multiple specimens | A giant lacewing of the family Kalligrammatidae. It is one of the oldest known representatives of the giant pollinator lacewings.[153] | |
Mesosmylina[151] |
|
|
Multiple specimens | Lance lacewings of the family Osmylidae. | ![]() |
Mesopsychopsis[151] |
|
|
Multiple specimens | A lance lacewing of the family Osmylopsychopidae. | |
Ophtalmogramma[152] |
|
|
Multiple specimens | A giant lacewing of the family Kalligrammatidae. | |
Panfilovia[127] |
|
|
Multiple specimens | A lacewing of the family Panfiloviidae. A large genus with wings around 50 mm. | |
Paractinophlebia[151] |
|
|
Multiple specimens | A lacewing of the family Prohemerobiidae. | |
Parhemerobius[127] |
|
|
Multiple specimens | A lacewing of the family Prohemerobiidae. | |
Prohemerobius[127][151] |
|
|
Multiple specimens | A lacewing of the family Prohemerobiidae. | |
Protoaristenymphes[154] |
|
|
Multiple specimens | A lance lacewing of the family Mesochrysopidae. | |
Stenoteleuta[151] |
|
|
Multiple specimens | A lacewing of the family Prohemerobiidae. | |
Tetanoptilon[127] |
|
|
Multiple specimens | Lance lacewings of the family Osmylidae. Tetanoptilon is the largest non-kalligrammatid lacewing of the Jurassic.[153] |
Hemiptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Adelocoris[127] |
|
|
Multiple specimens | Pentatomomorphans of the family Pachymeridiidae. Related with the group Lygaeoidea, possibly being ancestral to them. | ![]() |
Engerrophorus[127] |
|
|
Multiple specimens | ||
Euraspidium[127] |
|
|
Multiple specimens | ||
Ischnocoris[127] |
|
|
Multiple specimens | ||
Liassocicada[127][142][155] |
|
|
Multiple specimens | A Hairy Cicada of the family Tettigarctidae. | ![]() |
Liassotettigarcta[142] |
|
|
Multiple specimens | ||
Mesomphalocoris[127] |
|
|
Multiple specimens | Pentatomomorphans of the family Pachymeridiidae. | |
Stiphroschema[127] |
|
|
Multiple specimens | Pentatomomorphans of the family Pachymeridiidae. | |
Trachycoris[127] |
|
|
Multiple specimens | Pentatomomorphans of the family Pachymeridiidae. |
Coleoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Amblycephalonius[127] |
|
|
Multiple specimens | Beetles of the family Coptoclavidae. | |
Amphoxyne[127] |
|
|
Multiple specimens | Incertae sedis | |
Aposphinctus[127] |
|
|
Multiple specimens | A water scavenger beetle of the family Hydrophilidae. | ![]() |
Apicasia[127] |
|
|
Multiple specimens | Incertae sedis | |
Apiopyrenides[127] |
|
|
Multiple specimens | Incertae sedis | |
Aptilotitus[127] |
|
|
Multiple specimens | Incertae sedis | |
Auchenophorites[127] |
|
|
Multiple specimens | Incertae sedis | |
Brachylaimon[127] |
|
|
Multiple specimens | Incertae sedis | |
Brachytrachelites[127] |
|
|
Multiple specimens | Incertae sedis | |
Camaricopterus[127] |
|
|
Multiple specimens | A beetle of the family Phoroschizidae. | |
Coreoeicos[127] |
|
|
Multiple specimens | False ground beetles of the family Trachypachidae. | |
Diatrypamene[127] |
|
|
Multiple specimens | Incertae sedis | |
Dicyphelus[127] |
|
|
Multiple specimens | Incertae sedis | |
Diphymation[127] |
|
|
Multiple specimens | Incertae sedis | |
Diplocelides[127] |
|
|
Multiple specimens | Incertae sedis | |
Diplothece[127] |
|
|
Multiple specimens | Incertae sedis | |
Entomocantharus[127] |
|
|
Multiple specimens | Incertae sedis | |
Episcepes[127] |
|
|
Multiple specimens | Incertae sedis | |
Eurynotellus[127] |
|
|
Multiple specimens | Incertae sedis | |
Eurysphinctus[127] |
|
|
Multiple specimens | Incertae sedis | |
Eusarcantarus[127] |
|
|
Multiple specimens | Incertae sedis | |
Grasselites[127] |
|
|
Multiple specimens | Incertae sedis | |
Gastrodelus[127] |
|
|
Multiple specimens | Incertae sedis | |
Gastroratus[127] |
|
|
Multiple specimens | Incertae sedis | |
Hydroicetes[127] |
|
|
Multiple specimens | Incertae sedis | |
Laimocenos[127] |
|
|
Multiple specimens | Incertae sedis | |
Leptomites[127] |
|
|
Multiple specimens | Incertae sedis | |
Leptosolenophorus[127] |
|
|
Multiple specimens | Incertae sedis | |
Loxocamarotus[127] |
|
|
Multiple specimens | Incertae sedis | |
Macrotrachelites[127] |
|
|
Multiple specimens | Incertae sedis | |
Megachorites[127] |
|
|
Multiple specimens | Incertae sedis | |
Melanocantharis[127] |
|
|
Multiple specimens | Incertae sedis | |
Metanastes[127] |
|
|
Multiple specimens | Incertae sedis | |
Mesoncus[127] |
|
|
Multiple specimens | Incertae sedis | |
Mesotylites[127] |
|
|
Multiple specimens | Incertae sedis | |
Omogongylus[127] |
|
|
Multiple specimens | Incertae sedis | |
Ooidellus[127] |
|
|
Multiple specimens | Incertae sedis | |
Ooperiglyptus[127] |
|
|
Multiple specimens | Incertae sedis | |
Ooperioristus[127] |
|
|
Multiple specimens | Beetles of the family Coptoclavidae. | |
Opiselleipon[127] |
|
|
Multiple specimens | Incertae sedis | |
Oxycephalites[127] |
|
|
Multiple specimens | Incertae sedis | |
Palaeotrachys[127] |
|
|
Multiple specimens | Incertae sedis | |
Parnosoma[127] |
|
|
Multiple specimens | Incertae sedis | |
Peridosoma[127] |
|
|
Multiple specimens | Incertae sedis | |
Pholipheron[127] |
|
|
Multiple specimens | Incertae sedis | |
Proheuristes[127] |
|
|
Multiple specimens | Incertae sedis | |
Prosynactus[127] |
|
|
Multiple specimens | False ground beetles of the family Trachypachidae. | ![]() |
Pleuralocista[127] |
|
|
Multiple specimens | Incertae sedis | |
Rhomaleus[127] |
|
|
Multiple specimens | Incertae sedis | |
Rhysopsalis[127] |
|
|
Multiple specimens | Incertae sedis | |
Sphaericites[127] |
|
|
Multiple specimens | Incertae sedis | |
Tetragonides[127] |
|
|
Multiple specimens | Incertae sedis | |
Trichelepturgetes[127] |
|
|
Multiple specimens | Incertae sedis | |
Trochmalus[127] |
|
|
Multiple specimens | Incertae sedis | |
Scalopoides[127] |
|
|
Multiple specimens | Incertae sedis | |
Sideriosemion[127] |
|
|
Multiple specimens | Incertae sedis | |
Sphaerocantharis[127] |
|
|
Multiple specimens | Incertae sedis | |
Syntomopterus[127] |
|
|
Multiple specimens | Incertae sedis | |
Tripsalis[127] |
|
|
Multiple specimens | Incertae sedis | |
Trochiscites[127] |
|
|
Multiple specimens | Incertae sedis | |
Tolype[127] |
|
|
Multiple specimens | Incertae sedis | |
Zetemenos[127] |
|
|
Multiple specimens | Incertae sedis |
Amphiesmenoptera
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Necrotaulius[142][127][126][156] |
|
|
Multiple specimens | An Amphiesmenopteran of the family Necrotauliidae. The ovipositor terminalia of female N. parvulus indicate that these insects laid their eggs in soil rather than in water. | |
Micropterygidae[156] | Indeterminate |
|
Multiple specimens | Lepidopterans probably related with the family Micropterygidae. Compared with their record in Grimmen, in Lower Saxony lepidopterans are rather scarce and badly preserved. | ![]() |
Miscellaneous (incl. Diptera)
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
Amblylexis[127] |
|
|
Multiple specimens | Incertae sedis | |
Amianta[127] |
|
|
Multiple specimens | Incertae sedis | |
Amphipromeca[127] |
|
|
Multiple specimens | Incertae sedis | |
Apistogrypotes[127] |
|
|
Multiple specimens | Incertae sedis | |
Archipleciomima[157] |
|
|
Multiple specimens | Incertae sedis | |
Architipula[127] |
|
|
Multiple specimens | A crane fly of the family Limoniidae. | ![]() |
Bodephora[127] |
|
|
Multiple specimens | Incertae sedis | |
Culiciscolex[127] |
|
|
Multiple specimens | Incertae sedis | |
Cyrtomides[127] |
|
|
Multiple specimens | Incertae sedis | |
Ellipibodus[127] |
|
|
Multiple specimens | Incertae sedis | |
Eoptychoptera[142][158] |
|
|
Multiple specimens | A phantom crane fly of the family Eoptychopterinae. | |
Empidocampe[127] |
|
|
Multiple specimens | Incertae sedis | |
Geisfeldiella[159] |
|
|
Multiple specimens | Mayfly of the family Protereismatidae. | |
Haplobittacus[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | |
Haplotipula[127] |
|
|
Multiple specimens | A crane fly of the family Limoniidae. | |
Heterorhyphus[127] |
|
|
Multiple specimens | A fly of the family Heterorhyphidae. | |
Homoeoptychopteris[127] |
|
|
Multiple specimens | Incertae sedis | |
Hondelagia[127] |
|
|
Multiple specimens | A snakefly of the family Priscaenigmatidae. | |
Liassonympha[127] |
|
|
Multiple specimens | Incertae sedis | |
Leptotipuloides[127] |
|
|
Multiple specimens | A crane fly of the family Limoniidae. | |
Mikrotipula[127] |
|
|
Multiple specimens | A crane fly of the family Limoniidae. | |
Mesobittacus[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | |
Mesopanorpa[127] |
|
|
Multiple specimens | A scorpionfly of the family Orthophlebiidae. | |
Metaraphidia[147] |
|
|
Multiple specimens | A snakefly of the family Metaraphidiidae. | |
Mesorhyphus[157] |
|
|
Multiple specimens | A wood gnat of the family Anisopodidae. | ![]() |
Metatrichopteridium[160] |
|
|
Multiple specimens | A fly of the family Hennigmatidae. It represents the oldest known genus of this primitive family. | |
Nannotanyderus[142][161] |
|
|
Multiple specimens | A primitive crane fly of the family Tanyderidae. Extant members of the family are nectar feeder while the diets of extinct members cannot be determined precisely.[162] | ![]() |
Neorthophlebia[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | |
Orthophlebia[127] |
|
|
Multiple specimens | A scorpionfly of the family Orthophlebiidae. | |
Ozotipula[127] |
|
|
Multiple specimens | A crane fly of the family Limoniidae. | |
Parabittacus[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | |
Parorthophlebia[127] |
|
|
Multiple specimens | Scorpionflies of the family Orthophlebiidae. | |
Pleobittacus[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | |
Praemacrochile[127] |
|
|
Multiple specimens | A primitive crane fly of the family Tanyderidae. | |
Propexis[127] |
|
|
Multiple specimens | Incertae sedis | |
Protobittacus[127] |
|
|
Multiple specimens | A hangingfly of the family Bittacidae. | ![]() |
Protorthophlebia[127] |
|
|
Multiple specimens | Scorpionflies of the family Protorthophlebiidae. | |
Protoplecia[127] |
|
|
Multiple specimens | A fly of the family Protopleciidae. | |
Protorhyphus[127] |
|
|
Multiple specimens | A fly of the family Protorhyphidae. | |
Pseudopolycentropus[127] |
|
|
Multiple specimens | Scorpionflies of the family Pseudopolycentropodidae. | |
Reprehensa[127] |
|
|
Multiple specimens | Scorpionflies of the family Orthophlebiidae. | |
Rhopaloscolex[127] |
|
|
Multiple specimens | Incertae sedis | |
Sphallonymphites[127] |
|
|
Multiple specimens | Incertae sedis |
Echinodermata
[edit]Echinoderm debris is relatively abundant in the shale-free Unken and Salzburg members, including crinoid and brittle star skeletal elements; sea urchins take their place later in the formation, with them having especially diversified at that time, leading to pedicellaria being observed very often.[40]
Asterozoa
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
A brittle star within the family Ophiomusina. |
||
|
|
Multiple specimens |
A brittle star in incertae sedis family in the order Ophionereididae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiolepididae. |
![]() | |
|
|
Multiple specimens |
A brittle star in incertae sedis family in the order Ophiodermatina. |
||
|
|
Multiple specimens |
A brittle star in the family Euryophiurida. |
||
|
|
Multiple specimens |
A brittle star in the family Ophioscolecidae. |
||
|
|
Multiple specimens |
A brittle star un the family Ophiacanthida. Very common, related to non anoxic water sedimentation. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiomusaidae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiotomidae. |
||
|
|
Multiple specimens |
An Ophiuridan in the family Ophiuridae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiohelidae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiomusaidae. |
||
|
|
Multiple specimens |
A brittle star in the family Astrophiuridae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiactidae. Very rare in the layers. |
![]() | |
|
|
Multiple specimens |
A brittle star in the family Ophiopyrgidae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophiopyrgidae. |
||
|
|
Multiple specimens |
A brittle star in the family Ophioleucidae. The dominant asterozoan taxon in the formation. |
![]() | |
|
|
Multiple specimens |
A brittle star in the family Ophiomusina. |
Echinoidea
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
A sea urchin in the family Cidaridae. |
![]() | |
|
|
Multiple specimens |
A sea urchin in the family Pedinidae. It is the most common sea urchin found in the formation |
| |
|
|
Multiple specimens |
A sea urchin in the family Diadematidae |
| |
|
|
Multiple specimens |
A sea urchin in the family Pedinidae |
||
|
|
Multiple specimens |
A sea urchin in the family Miocidaridae |
||
|
|
Multiple specimens |
A sea urchin in the family Pseudodiadematidae |
Holothuroidea
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Multiple specimens |
A sea cucumber in the family Achistridae inside Apodida. |
| |
|
|
Multiple specimens |
A sea cucumber in the family Calclamnidae inside Dendrochirotida. |
||
|
|
Multiple specimens |
A sea cucumber in the family Stichopitidae. Occurs sporadically in non-bituminous sediments in the upper bifrons zone |
||
|
|
Multiple specimens |
A sea cucumber in the family Chiridotidae. It is the only major genus of sea cucumber reported locally in the Posidonienschiefer. |
Crinoidea
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens, some associated with rafts. |
Type genus of the family Pentacrinitidae. Like Seirocrinus, Pentacrinites formed colonies in rafting wood. Was a small genus, with multiple specimens no more than 1 meter long, usually measuring 40–70 cm. |
| |
|
|
Isolated Stems |
A crinoid in the family Plicatocrinidae. |
||
|
|
Exceptionally well preserved individual with the arms, pinnules and cirri largely intact |
A crinoid in the family Isocrinida. This benthic crinoid clearly represents an exotic element in the typical Posidonia fauna, likely moved from coastal settings. |
||
|
|
Various complete and nearly complete specimens, some associated with rafts |
The largest known crinoid, from the family Pentacrinitidae. Seirocrinus consists of fossils in colonies along large wood trunks, with specimens up to 14 m long and the largest reaching 26 m, which makes it among the tallest known Mesozoic organisms, one of the largest invertebrates known in the fossil record and one if the tallest known animals.[171] It was an open ocean organism that lived on rafting wood, probably filtering food and serving as a refuge for other animals, such as ammonites. The crinoids had a large colonization process, based on their fossils in the wood.[172] The large rafts were the home for a high variety of marine organisms, such as barnacles, ammonites and others. It has been estimated that without the presence of modern raft wood predators (that appeared in the Bathonian) these rafts could have lasted up to 5 years, being the main reason that the crinoids were able to reach such huge sizes. The large rafts were also probably essential to distribute animals along the Early Jurassic seas.[13] |
![]() |
Vertebrata
[edit]Fishes
[edit]Chondrichthyes
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Head and postcranial remains |
A member of Myriacanthidae inside Chimaeriformes. An aberrant Chimaera with a strange elongated nose and horns over the skull. |
| |
|
|
Teeth |
Type genus of the family Acrodontidae. |
||
|
|
Upper ("palatine") toothplate |
A member of Callorhynchidae inside Chimaeriformes. Similar to Callorhinchus, among the oldest known of its type. It is the first “modern” chimaera from the Toarcian. |
![]() | |
|
|
Teeth |
A shark of the family Hybodontidae. An aberrant hybodontid with crushing dentition. |
| |
|
|
Meckelian Cartilages, Jaws, teeth, Palatoquadrates, placoid scales and dearticulated parts of the labial, hyoid and branchial skeleton. |
A shark of the family Hybodontidae. The type specimen belongs to a large hybodontid, with an estimated total length of up to 3 m.[176] |
||
|
|
Various complete and nearly complete specimens |
Type genus of the family Hybodontidae. It is the most abundant shark in the layers of the Sachrang Formation, with some of the best preserved specimens of the genus known.[179] |
![]() | |
|
|
Isolated dorsal fin spines, chondrocranium, partial fin spine and length of vertebral column |
A member of Myriacanthidae inside Chimaeriformes. An aberrant Chimaera with a second jaw-like structure on its head. |
||
|
|
Anterior part of body with basicranium, palatoquadrates, Meckel's cartilage, ceratohyals, epihyals, teeth, traces of the branchial arches and the anterior finspine |
Type member of the family Palaeospinacidae. |
||
|
|
Articulated vertebral column, girdles, both fin spines and clasper organ |
A member of the family Palaeospinacidae. |
||
Pseudonotidanus[184] |
|
|
Partial, articulated specimen |
A shark of the family Hexanchiformes. It was identified originally as a member of the genus Palaeospinax. |
|
Gen et sp. nov |
|
SMNS 52666, Incomplete specimen |
A possible member of Batoidea. It was originally identified as a member of Galeiformes. |
| |
|
|
Isolated fin spine |
A member of Myriacanthidae inside Chimaeriformes. |
Actinopterygii
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
Type genus of the family Caturidae inside Amiiformes |
![]() | |
|
|
Various complete and nearly complete specimens |
A deep-bodied neopterygian, the type genus of the family Dapediidae. Unpublished material indicates the presence of one or even two more still undescribed species of Dapedium in the Lower Toarcian.[189][190] |
| |
|
|
Various complete and nearly complete specimens |
A member of the family Pachycormidae. |
| |
Germanostomus[192] |
|
|
|
A pachycormid. |
|
|
|
|
A pachycormid. |
||
|
|
|
A member of the family Furidae inside Ionoscopiformes |
||
|
|
Complete specimen |
A ganoin-scaled member of Ophiopsiformes (Halecomorphi). The type specimen is 51 cm long, and has elongated and serrated body scales before the dorsal fin and tiny ganoid scales after it.[194] |
||
|
|
Various complete and nearly complete specimens |
A common member of the Lepisosteiformes. |
![]() | |
|
|
Thousands of complete and nearly complete specimens |
A member of the family Leptolepididae. The most common fish found within the formation, Leptolepis is thought to have formed large schools like modern herring. |
![]() | |
|
|
MB. f.7612, nearly complete specimen. |
A member of the family Leptolepididae. It was identified as Paraleptolepis, but this name is currently occupied by a Japanese fish genus of Early Cretaceous age.[200] It differs from Leptolepis coryphaenoides through the presence of a few autapomorphies and also in the retention of several primitive features not present on the former.[199] A relatively small fish, around 14 cm long.[199] |
![]() | |
|
|
|
A possible representative of the family Saurichthyidae. It is based on rather fragmentary specimens. |
||
|
|
Nearly complete specimen with broken skull |
The first ganoin-scaled member of Ophiopsiformes (Halecomorphi) from the Posidonienschiefer. Elongated morphology, with a length of ~39 cm, covered by smooth, massive ganoin scales.[194] |
||
Ohmdenia[201] |
|
|
Single disarticulated specimen |
A large member of the family Pachycormidae, with a length of up to 2.5–3 m and an estimated weight over 200 kg.[201] |
|
|
|
Various complete and nearly complete specimens |
Type member of the family Pachycormidae. A large representative of its family, reaching up to 1.5 m. One specimen preserves the stomach filled with numerous hooklets.[18] |
| |
|
|
Various complete and nearly complete specimens |
A member of the family Pholidophoridae. |
![]() | |
|
|
Various complete and nearly complete specimens |
Type genus of the family Ptycholepididae inside Ptycholepiformes. It is one of the youngest representatives of its family. |
| |
|
|
Various complete and nearly complete specimens |
A large member of the family Pachycormidae. |
| |
|
|
Various complete and nearly complete specimens |
The youngest representative of the family Saurichthyidae, known for its large jaws, similar to modern Belonidae. |
| |
|
|
Various complete and nearly complete specimens |
A member of the family Pachycormidae. A large representative of the family, reaching sizes up to 2.3 m. |
![]() | |
Strongylosteus[208] |
|
|
Various complete and nearly complete specimens |
A large member of the Chondrosteidae and the largest non-reptilian marine vertebrate of the Posidonienschiefer Fm, with a size around 3.2 m.[208] |
![]() |
|
|
Various complete and nearly complete specimens |
A deep-bodied neopterygian of the family Dapediidae. |
| |
Toarcocephalus[20] |
|
|
|
A member of the family Coccolepididae. The first representative of the family from the Toarcian. |
Sarcopterygii
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
A large coelacanth of the family Mawsoniidae, related to the genera Axelrodichthys, Chinlea, Diplurus and the type, Mawsonia.[211] The largest specimen known from the Sachrang Formation is GPIT.OS.770 (the holotype), being over 1.6 m long.[210] The specimen preserves an ossified lung inside the abdominal cavity, and most of the body, being also one of the most complete coelacanths of the Jurassic found.[210][211] Trachymetopon predates the earliest other presence of the family Mawsoniidae in Europe by about 120 Ma and is the northernmost occurrence of a member of the group, implying an extensive geographic range during the Early Jurassic.[211] Due to the specimens being found on pelagic deposits, this suggests that it probably was an open ocean swimmer.[210][211] |
|
Amniota
[edit]Ichthyosauria
[edit]Inderminate specimens are known.[29][195][196][197]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
A large ichthyosaur of the family Leptonectidae which, convergently with modern swordfish, evolved an extremely long upper jaw. Like these fishes, Eurhinosaurus is believed to be a fast swimming predator, able to hunt fish schools on same way. Large specimens of up to 6 m are known. |
| |
|
|
Various complete and nearly complete specimens |
Likely a member of Parvipelvia, sister group to Stenopterygius + Ophthalmosauridae. A small- to mid-sized ichthyosaur, 2–3 m in length, with a relatively short and slender antorbital rostrum.[215] |
| |
|
|
Various complete and nearly complete specimens |
A possible member of the family Leptonectidae. Most of the specimens of this genus have been referred to Leptonectes or Temnodontosaurus, although some remains in the Posidonienschiefer are too complex to be clearly referred. |
||
|
|
Almost complete articulated skeleton |
An ichthyosaur of the family Stenopterygiidae. Magnipterygius may not have grown to a total length of much more than 120 cm. It is therefore potentially only the second post-Triassic ichthyosaur known with such a small body size |
||
|
|
Various complete and nearly complete specimens |
Type genus of the family Stenopterygiidae. A common Toarcian ichthyosaur, present in multiple layers. The rather exquisite level of preservation has led to even the coloration being preserved. This shows a clear countershading, with an upper part being darker than the lower, similar to modern killer whales, the Heaviside's dolphin or the Dall's porpoise. There is also evidence of changes in color with ontogenetic changes, going from dark juveniles to countershaded adults. The skin was flexible & scaleless, as in dolphins.[219] The study of several specimens has revelated that Stenopterygius quadriscissus underwent a size-related trophic niche shift through ontogeny, shifting from a piscivorous diet to a teuthophagous diet, known thanks to exquisitely preserved stomach contents.[220] |
![]() | |
|
|
Various complete and nearly complete specimens |
Type genus of the family Suevoleviathanidae. Includes specimens up to 4 m long. |
| |
|
|
Various complete and nearly complete specimens |
Type genus of the family Temnodontosauridae. A large macroraptorial ichthyosaur, the apex predator of its environment. It ranges between 9 and 12 m, being one of the largest known ichthyosaurs, characterised by skulls and jaws over 1 m in length, with the largest being over 1.9 m long. It has been found with fragments of young ichthyosaurs in its stomach.[17] |
|
Plesiosauria
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
A basal member of Pliosauridae. It had a long snout similar to that of Peloneustes, gharials or dolphins.[226] |
![]() | |
|
|
Various complete and nearly complete specimens |
A junior synonym of M. brachypterygius.[228] |
![]() | |
|
|
Various complete and nearly complete specimens |
A member of Rhomaleosauridae. |
![]() | |
|
|
Various complete and nearly complete specimens |
Type genus of the plesiosaur family Microcleididae. |
![]() | |
|
|
|
SMNS 51945 is a well preserved immature specimen with possible phosphatised muscle tissues and eumelanin that possibly corresponds to areas dark-coloured in life, and its anatomical characters suggest it represents a new genus.[228] MH 7 shows a mosaic of smooth skin and (possibly keeled) scales.[232] |
||
|
|
Various complete and nearly complete specimens |
A Plesiosauroidean that has been linked with Cryptoclididae, yet recently revelated to be a derived non-microcleidid |
![]() | |
|
|
Isolated caudal & cervical vertebrae |
A plesiosaur assigned to the genus Plesiosaurus, yet it shows more affinities with Anningasaura |
||
|
|
Various complete and nearly complete specimens |
A plesiosaur of the family Microcleididae. It was originally placed as "Plesiosaurus guilelmiimperatoris". |
![]() |
Sphenodontia
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
An aquatic sphenodont of the family Pleurosauridae. Paleopleurosaurus shows a slight skeletal specialization for an aquatic lifestyle, achieved through the Jurassic gradually in pleurosaurs.[237] Recent studies suggest a shorter lifespan than modern tuatara, based on irregular spacing of growth marks.[238] |
![]() |
Testudinata
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Shells? and Isolated plastrons |
A marine turtle of the superfamily Eurysternidae inside Thalassochelydia. It is the main formally identified turtle fossil from the Sachrang Formation, representing a rather basal genus. The pleurals resemble those of the genus Plesiochelys.[239] Being found in the zone of Franconia, which in the Toarcian was around 80 km from the shore, suggests that early marine turtles lived in the epicontinental waters of European shallow seas before they reached richer ecosystem diversity on the Late Jurassic.[239] This would explain the serious lack of turtle fossils on the formation, as most of the deposits are located far from the coast.[239] Münster (1834) cited possible unclassified turtle remains: "there were also rare things at the quarries of Altdorf, among other remains there were ones of a turtle on lias limestone"". The remains are not catalogued and some specimens are in private collections.[243] |
Crocodylomorpha
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Various complete and nearly complete specimens |
A longirostrine thalattosuchian of the family Machimosauridae. Was considered synonymous with Steneosaurus until in 2020 the latter was recovered as invalid. It reached large sizes, with specimens exceeding 5 m, being a generalist predator.[246] |
| |
|
|
Various complete and nearly complete specimens |
A mesorostrine thalattosuchian of the family Teleosauridae. A marine crocodylomorph with a diet probably composed of fish. Was considered synonymous with Steneosaurus until recently.[248] Due to the unusual placement of the external nares, Mystriosaurus was likely more terrestrial, or spent a greater amount of time on land, than other teleosauroids. This would explain its greater presence in zones of the formation closer to the emerged landmasses. Its morphology suggest it was a mesorostrine generalist.[248] |
| |
|
|
Various complete and nearly complete specimens |
A thalattosuchian with a complex designation, probably the basalmost metriorhynchoid. Pelagosaurus typus was a small-bodied thalattosuchian (~1 m in length) considered to be an adept aquatic pursuit predator, with a long streamlined snout ideal for snapping at fast moving prey (one specimen was found with Leptolepis fishes inside) and large, anterolaterally placed orbits for increased visual acuity.[249] |
| |
|
|
Various complete and nearly complete specimens |
A longirostrine thalattosuchian, the most basal known. Was considered synonymous with Steneosaurus. Longirostrine specialist, probably an active fish hunter. |
||
|
|
Various complete and nearly complete specimens |
A longirostrine thalattosuchian of the family Teleosauridae. Platysuchus was slightly more robust than its contemporaneous relatives, being probably adapted to hunt larger fish. It was a heavily armoured, semi-terrestrial longirostrine generalist form, indicated by the extensive and tightly packed rows of dorsal osteoderms.[246] |
![]() |
Pterosauria
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
Various complete and nearly complete specimens |
A novialoidean pterosaur, type genus of the family Campylognathoidea. Mark Witton suggested the construction of Campylognathoides' extremely robust forelimbs, with proportionally long wing fingers, could be a specialization for a fast aerial lifestyle comparable to those of falcons and mastiff bats, being more probably an insect & vertebrate hunter and living on nearshore environments. However a 2024 study found Clarkeiteuthis hooks within the gut of some specimens, suggesting a teuthophagous lifestyle.[25] |
| ||
|
|
Various complete and nearly complete specimens |
A rhamphorhynchine Pterosaur. It is one of the best known Early Jurassic pterosaurs.[252] Dorygnathus mistelgauensis is considered a junior synonym until more data can be recovered from the specimen, which is held in a private collection.[252] Soft tissues, including fur/feather-like filaments & possible coloration traces have been found.[255] |
![]() | |
|
|
Skull |
A rhamphorhynchine Pterosaur. Has been assigned to the genus Dorygnathus. It has an almost entirely complete skull which may help to explain the status of the genus Parapsicephalus.[256] |
Dinosauria
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Tibia and astragalus |
A gravisaurian sauropod, one of the few formally described from the Toarcian. At first it was confused for a plesiosaur bone.[257] |
![]() |
Plantae
[edit]
The macroflora of the Posidonia Slate can be described as extremely poor in species.[258] Apart from the remains of horsetails, it is without exception the remains of coarse branches and fronds from gymnosperms, which can be assumed were transport resistant. Remains of ferns are completely missing, except for tall arboreal ferns (Peltaspermales).[259] Most of the flora was reported from the area of Braunschweig.[258] The major explanation for this flora could be that the plants in question are mono-or oligotypic stands on the edge of the waters that flowed into the Posidonienschiefer sea, probably torn away in flood events, easily fragmented during transport and from waves, especially in the occasional storm events postulated.[260] In terms of taphonomy, this would result in a comparison with today's reed Phragmites, which can form extensive stocks on the edge of shallow and slowly flowing waters.[258] The wood remnants clearly indicate higher diversity of coniferous flora in the delivery area than remains of leafy branches.[258] This fact is likely to be proportionate, similar to the frequent occurrence of charcoalized trunks, most of them are believed to be "driftwoods" which spent a long time drifting, and this also suggests frequent settlement with mussels and full-grown crinoids.[258][260] The deposition settings are a large distance from the nearest coastline (for southern Germany about 100 kilometers), making only plants resistant to transportation able to survive long enough to get deposited.[261][141] At Irlbach and Kheleim, NE of Regensburg, where the Posidonienschiefer has a near mainland deposit with abundant sand, a rich deposit filled with plant remains of different kinds (Seeds, reproductive organs, leaves, stems, cuticles and wood) with traces of coal was recovered, however, it was never studied in depth.[78] Of all the plant material excavated only a few bennettite leaves and two conifer branches with leaves were cited and none studied.[78] In the Austrian sites the Sachrang Member was developed in the basinal area, while the Unken Member, sandwiched between red, often condensed limestones, represents the marginal facies.[40] Due to being more marginal and connected with the southern Vindelician land, the most diverse palynological assemblages of the formation are found transported from zones with moldanuvian granites as proven by the feldspar accumulations.[40]
Phytoclasts
[edit]Phytoclasts have been recovered from several sections on the formation, but only studied in depth from the Dotternhausen and specially Dormettingen.[46] Here two kinds of phytoclasts were recovered, opaque phytoclasts (charcoal, indicator of wildfire activity on nearby landmasses, indicator of seasonal alterations of the water column) and translucent phytoclasts (indicator of proximal landmasses with high availability of wood and other plant material, as well as transport conditions).[46] On the lowermost part of the section opaque phytoclasts are low (15% of the total organic matter) while translucent are incredibly abundant (40%), lowering to around 20-10% on the next section.[46] The Exaratum subzone is the only one with an inverse trend and more abundance of opaque phytoclasts. On the Bifrons level, both types reach between a 15% and a 30%, showing a rapid increase, then decreasing at the end of the section to values of less than 10%.[46] Opaque Phytoclasts, for a supposed marine deposit are relatively abundant on some sections, while their decreasing levels suggest (along with increasing levels of Kaolinite) an increased delivery of land plant material by rivers, from areas with wetter climate and less frequent fires, while its rise suggests the opposite, a nearby continental setting with dry climate and continuous wildfire activity.[46]
Palynology
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Pollen |
Affinities with the families Peltaspermaceae, Corystospermaceae or Umkomasiaceae inside Peltaspermales. Pollen of uncertain provenance, that may be derived from any of the members of the Peltaspermales. The lack of distinctive characters and bad preservation are among the main factors making this palynological residue difficult to classify. arborescent to arbustive seed ferns. |
||
|
|
Spores |
Affinities with the family Osmundaceae in the Polypodiopsida. Near fluvial current ferns, related to the modern Osmunda regalis. |
||
|
|
Pollen |
![]() | ||
|
|
Pollen |
Affinities with both Sciadopityaceae and Miroviaceae inside Pinopsida. This pollen’s resemblance with extant Sciadopitys suggests that Miroviaceae may be an extinct lineage of sciadopityaceaous-like plants.[265] |
![]() | |
|
|
Pollen |
Affinities with Cycadaceae and probably Cycadales. Alternatively it may be pollen from Bennettitales. It is the most abundant non-conifer pollen recovered from the formation, recovered in all the major sampled areas. Probably derived from arbustive cycads, this genus is related with dry settings, even being known from desertic regions. |
![]() | |
|
|
Pollen |
Affinities with the Cheirolepidiaceae inside Pinales. Pollen from arborescent to arbustive plants. It is rare within the samples measured. |
||
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Coniferae. Pollen of medium to large arborescent plants, specially conifers. |
||
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Coniferae. Abundant in the Lower Jurassic of North and Southern Europe, represents pollen of medium to large arborescent plants, specially conifers. The abundance of pollen of Classopollis and other thermophilic plants was observed in this region in the lower Toarcian from the end of the antiquum (= tenuicostatum) zone to the middle of commune zone.[267] Classopollis is correlated with evaporites and are therefore associated with desert basins, but the shrubs may have also lived in xeric upland areas with seasonal fires. Evidence of fires is absent in the marine Posidonienschiefer, but has been recovered on the coeval nearshore calcareous sandstones.[267] It increases with the appearance of charcoal phytoclasts, as derived from dry settings with increased wildfires.[46] |
||
|
|
Pollen |
Affinities with Gnetopsida and probably Gnetophyta. Has been considered pollen of Chloranthaceae. However, it is too old to belong to advanced angiosperms. It probably comes from cones related to the genus Piroconites kuesperti from the lowermost Jurassic of Germany, resembling pollen of extant Ephedra and Welwitschia. |
![]() | |
|
|
Spores |
Affinities with Gleicheniaceae inside Gleicheniales. It suggests a relative increase of humidity on the rivers flowing towards the Austrian realm. The most abundant term spore in this region. |
![]() | |
|
|
Pollen |
Affinities with Cheirolepidiaceae and Araucariaceae inside Pinaceae. Uncertain affinities. |
||
|
|
Spores |
Affinities with the family Cyatheaceae inside Cyatheales. Likely from a tree fern. |
| |
|
|
Pollen |
Affinities with the Cycadopsida inside Cycadales. Pollen related with modern Cycas, arbustive to lower floor plants, relatively abundant, present in various of the measured samples. The most common pollen of the Austrian realm, alongside being an indicator of dry settings. |
![]() | |
|
|
Spores |
Affinities with Dicksoniaceae inside Pteridopsida. Likely from a tree fern. |
![]() | |
|
|
Spores |
Affinities with the Selaginellaceae in the Lycopsida. Herbaceous lycophyte flora, similar to ferns, found in humid settings |
![]() | |
|
|
Pollen |
Affinities with Podocarpaceae inside Pinopsida. Pollen from arbustive to arborescent plants. |
![]() | |
|
|
Pollen |
Affinities with the family Cupressaceae inside Pinopsida. Pollen resembles extant genera such as Actinostrobus and Austrocedrus, probably from dry environments. |
![]() | |
|
|
Spores |
Affinities with Selaginellaceae and probably Lycopsida. A rare element in the palynological records of the German Basin, although more abundant than any other spore recovered locally. |
||
|
|
Pollen |
Affinities with the Pinidae inside Coniferae. Abundant in the Lower Jurassic of NW Europe. Its identification in the Posidonienschiefer is rather unclear due to the bad preservation of the pollen grains. |
![]() | |
|
|
Spores |
Affinities with Pteridopsida. Spores from several types of ferns, relatively rare, present only in 2 samples. |
||
|
|
Spores |
Affinities with the family Dennstaedtiaceae in the Polypodiales. Forest fern spores. |
![]() | |
|
|
Spores |
Affinities with the Ophioglossaceae inside Filicopsida. Spores related with modern floor ferns, which appear on abundant water locations. The Unken Member is considered a more basinal deposit, where wood and sporomorph remains are more common. |
![]() | |
|
|
Spores |
Affinities with the family Osmundaceae inside Polypodiopsida. Found near fluvial currents, related to the modern Osmunda regalis |
![]() | |
|
|
Pollen |
Affinities with the Podocarpaceae inside Pinopsida. Conifer pollen from medium to large arborescent plants. |
![]() | |
|
|
Spores |
Affinities with the family Notothyladaceae inside Anthocerotopsida. Hornwort spores. |
![]() | |
|
|
Pollen |
Affinities with Podocarpaceae and Pinaceae inside Coniferophyta. |
||
|
|
Spores |
Affinities with Lycopodiaceae inside Lycopsida. |
||
|
|
Pollen |
Affinities with Cheirolepidiaceae inside Pinaceae. Abundant in the Lower Jurassic of NW Europe. Spheripollenites co-occurs on the coeval Sorthat Formation with cuticles of Dactyletrophyllum ramonensis, and after further study a highly significant correlation was found, which may suggest that the species S. psilatus was produced by the conifer genus Dactyletrophyllum.[269] |
||
|
|
Spores |
Affinities with Sphagnaceae inside Sphagnopsida. |
||
|
|
Spores |
Affinities with Polypodiaceae inside Filicopsida. |
||
|
|
Spores |
Affinities with Osmundaceae inside Filicopsida. |
Equisetaceae
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Stems |
Affinities with Equisetaceae inside Equisetopsida. A number of mostly very fragmented and not particularly well preserved, but clear horsetail remains have been described. Recognisable leaf sheaths were developed in most cases, but the state of preservation does not allow more precise determination.[270][271] |
||
|
|
Stems and incomplete axes |
Affinities with Equisetaceae inside Equisetopsida. Neocalamites is one of the most common plants in all the Posidonia Shale, even being found in Luxembourg’s Posidonia strata.[272] Most of the stems reported come from Aeolian-Dunar related deposits, or from nearshore-basinal deposition. It likely grew near the seashore.[272] Some stems are very large, resembling the rates of growth seen on modern bamboo specimens, suggesting the whole plant was over 6 m tall.[272] |
|
Pteridospermatophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
|
Affinities with Umkomasiaceae inside Corystospermaceae. The genus is based on bipinnate leaves, with a longitudinally striated rachis, a long petiole and secondary rachises. It belongs to a large tree-like plant. The one Sachrang Formation specimen is characterized for its large size and probably was attached to trunks similar in appearance to the Cretaceous genus Tempskya.[273] |
![]() |
Bennettitales
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Leaflets |
A member of Williamsoniaceae inside Bennettitales. Identified originally as Zamites oblongifolius |
||
|
|
Leaflets |
Affinities with Cycadeoidaceae inside Bennettitales. It is the most abundant non conifer plant fossil in the environment. |
![]() | |
|
|
Leaflets |
Affinities with Cycadeoidaceae inside Bennettitales. Some specimens were assigned to "Dioonites acutifolium". |
| |
|
|
Leaflets |
Affinities with Williamsoniaceae inside Bennettitales. |
![]() | |
|
|
Leaflets |
A member of Williamsoniaceae inside Bennettitales. |
![]() |
Ginkgoales
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Leaf compressions |
Affinities with Ginkgoaceae inside Ginkgoales. In Germany, there are regular remains of coal, which are initially reminiscent of small ginkgo leaves. The leaves are hard to identify, more or less regularly concentric structures, with them sometimes appearing like the coarse fruiting bodies of wood-dwelling fungi, such as the genus Trametes. |
![]() |
Pinophyta
[edit]Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Branched shoots |
Affinities with Araucariaceae or Cheirolepidiaceae inside Pinales. |
||
|
|
Seed cones |
Affinities with Araucariaceae or Cheirolepidiaceae inside Pinales. The genus sepresents various kinds of cones from diverse conifer origin. |
||
|
|
Ovuliferous dwarf-shoots |
Affinities with Cheirolepidiaceae. |
||
|
|
Branched shoots |
Affinities with Araucariaceae or Cheirolepidiaceae inside Pinales. Pagiophyllum araucarinum predominates among the types of leafy coniferous branches found locally. |
![]() | |
|
|
Branched Shoots |
A possible ancestral member of the Callitroideae inside Cupressaceae, or a member of Cheirolepidiaceae. Named also "Cupressites" liasicus, probably represents an arbustive to arborescent-derived axis. |
|
Fossil wood
[edit]Fossil wood amount increases in the marginal Unken Member, with great amounts of logs and fragments more than 1 m long. Surface studies suggest relationships with the wood genera identified on the coeval Úrkút Manganese Ore Formation.[277]
Genus | Species | Location | Material | Notes | Images |
---|---|---|---|---|---|
|
|
Wood |
Affinities with Araucariaceae inside Pinales. One of the largest known rafting wood specimens in the fossil record is assigned to this genus, with a length of 18 m.[14] |
![]() | |
|
|
Wood |
![]() | ||
|
|
Wood |
Affinities with Podocarpaceae inside Pinales. |
||
|
|
Wood |
Affinities with Cupressaceae inside Pinales. |
![]() | |
|
|
Wood |
Affinities with Podocarpaceae inside Pinales. |
| |
|
|
Wood |
Affinities with Cheirolepidiaceae inside Pinales. |
| |
|
|
Wood |
Affinities with Podocarpaceae or Cupressaceae inside Pinales. |
![]() | |
|
|
Wood |
Wood of the Protopinaceae, a possible "morpho-group" of the family Cheirolepidiaceae.[282] |
||
|
|
Wood |
Affinities with Podocarpaceae inside Pinales. |
||
|
|
Wood |
Affinities with the Cupressaceae inside Pinales. |
![]() | |
|
|
Wood |
Affinities with Pinophyta, likely close to the Podocarpaceae, Cupressaceae and in a lesser extent to the Cheirolepidiaceae. Finally it may be a member of the extinct family Miroviaceae. |
References
[edit]- ^ a b Hess, H. (1999). "Lower Jurassic Posidonia Shale of Southern Germany" (PDF). Fossil Crinoids. 3 (1): 183–196. doi:10.1017/CBO9780511626159.025. ISBN 9780521450249. Retrieved 3 March 2022.
- ^ a b Martill, D. M. (1993). "Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia Shale (Lower Jurassic) of Germany" (PDF). Kaupia. 2 (1): 77–97. Retrieved 3 March 2022.
- ^ Schmid–Röhl, A.; Röhl, H. J. (2003). "Overgrowth on ammonite conchs: environmental implications for the Lower Toarcian Posidonia Shale". Palaeontology. 46 (2): 339–352. Bibcode:2003Palgy..46..339S. doi:10.1111/1475-4983.00302. S2CID 128413601.
- ^ a b c d e f g h i j Arp, G.; Gropengießer, S. (2016). "The Monotis–Dactylioceras Bed in the Posidonienschiefer Formation (Toarcian, southern Germany): condensed section, tempestite, or tsunami-generated deposit?". PalZ. 90 (2): 271–286. Bibcode:2016PalZ...90..271A. doi:10.1007/s12542-015-0271-7. S2CID 128091360. Retrieved 2 March 2022.
- ^ Birzer, F.; Joos, O. (1936). "Die Monotisbank in den Posidonienschiefern, besonders Frankens: Zur Geologie der Ehrenbürg (Walberla) bei Forchheim. Bayer" (PDF). Oberbergamt. 35 (2): 1–46. Retrieved 2 April 2022.
- ^ a b c d e f Fraaye, R.; Jäger, M. (1995). "Decapods in ammonite shells: examples of inquilinism from the Jurassic of England and Germany". Palaeontology. 38 (1): 63–76. Retrieved 2 March 2022.[permanent dead link ]
- ^ a b c d Klompmaker, A.A.; Fraaije, R.H.B. (2012). "Animal Behavior frozen in time: gregarious behavior of early jurassic lobsters within an ammonoid body chamber". PLOS ONE. 7 (3): e31893. Bibcode:2012PLoSO...731893K. doi:10.1371/journal.pone.0031893. PMC 3296704. PMID 22412846.
- ^ a b c d e f g Maxwell, Erin E.; Cooper, Samuel L. A.; Mujal, Eudald; Miedema, Feiko; Serafini, Giovanni; Schweigert, Günter (2022). "Evaluating the Existence of Vertebrate Deadfall Communities from the Early Jurassic Posidonienschiefer Formation". Geosciences. 12 (4): 158–176. Bibcode:2022Geosc..12..158M. doi:10.3390/geosciences12040158.
- ^ a b c d Jenny, D.; Fuchs, D.; Arkhipkin, A.I. (2019). "Predatory behaviour and taphonomy of a Jurassic belemnoid coleoid (Diplobelida, Cephalopoda)". Sci Rep. 9 (7944): 65–77. Bibcode:2019NatSR...9.7944J. doi:10.1038/s41598-019-44260-w. PMC 6538661. PMID 31138838.
- ^ a b Glass, K.; Ito, S.; Wilby, P. R.; Sota, T.; Nakamura, A.; Bowers, C. R; Wakamatsu, K. (2013). "Impact of diagenesis and maturation on the survival of eumelanin in the fossil record". Organic Geochemistry. 64 (2): 29–37. Bibcode:2013OrGeo..64...29G. doi:10.1016/j.orggeochem.2013.09.002. Retrieved 2 March 2022.
- ^ a b c Klug, C.; Schweigert, G.; Fuchs, D. (2021). "Distraction sinking and fossilized coleoid predatory behaviour from the German Early Jurassic". Swiss J Palaeontol. 140 (7): 17–31. Bibcode:2021SwJP..140....7K. doi:10.1186/s13358-021-00218-y. PMC 7965854. PMID 33815267.
- ^ a b Klug, C.; Schweigert, G.; Hoffmann, R. (2021). "Fossilized leftover falls as sources of palaeoecological data: a "pabulite" comprising a crustacean, a belemnite and a vertebrate from the Early Jurassic Posidonia Shale". Swiss J Palaeontol. 140 (10): 18–31. Bibcode:2021SwJP..140...10K. doi:10.1186/s13358-021-00225-z. PMC 8549986. PMID 34721282. S2CID 233450993.
- ^ a b c d e f Hunter, A. W.; Mitchell, E. G.; Casenove, D.; Mayers, C. (2019). "Reconstructing the ecology of a Jurassic pseudoplanktonic megaraft colony". Royal Society Open Science. 7 (7): 12–31. doi:10.1098/rsos.200142. PMC 7428219. PMID 32874621.
- ^ a b c d e f g h Matzke, A. T.; Maisch, M. W. (2019). "Palaeoecology and taphonomy of a Seirocrinus (Echinodermata: Crinoidea) colony from the Early Jurassic Posidonienschiefer Formation (Early Toarcian) of Dotternhausen (SW Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 291 (1): 89–107. Bibcode:2019NJGPA.291...89M. doi:10.1127/njgpa/2019/0791. S2CID 134199163. Retrieved 3 March 2022.
- ^ a b c d e Gale, A.; Schweigert, G. (2016). "A new phosphatic-shelled cirripede (Crustacea, Thoracica) from the Lower Jurassic (Toarcian) of Germany–the oldest epiplanktonic barnacle". Palaeontology. 59 (1): 59–70. Bibcode:2016Palgy..59...59G. doi:10.1111/pala.12207. S2CID 128383968. Retrieved 2 March 2022.
- ^ a b Schmidt, M. (1921). "Hybodus hauffianus und die Belemnitenschlachtfelder". Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg. 77 (1): 103–107.
- ^ a b c d Thies, D.; Hauff, R. B. (2013). "A Speiballen from the lower jurassic posidonia shale of South Germany" (PDF). Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 267 (1): 117–124. Bibcode:2013NJGPA.267..117T. doi:10.1127/0077-7749/2012/0301. Archived from the original (PDF) on 3 March 2022. Retrieved 10 February 2022.
- ^ a b Přikryl, T.; Košták, M.; Mazuch, M.; Mikuláš, R. (2012). "Evidence for fish predation on a coleoid cephalopod from the Lower Jurassic Posidonia Shale of Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 263 (1): 25–33. Bibcode:2012NJGPA.263...25P. doi:10.1127/0077-7749/2012/0206. Retrieved 19 February 2022.
- ^ Cooper, S. L.; Maxwell, E. E. (2023). "Death by ammonite: fatal ingestion of an ammonoid shell by an Early Jurassic bony fish". Geological Magazine. 160 (7): 1254–1261. Bibcode:2023GeoM..160.1254C. doi:10.1017/S0016756823000456.
- ^ a b Cooper, Samuel L.A.; López-Arbarello, Adriana; Maxwell, Erin E. (2024). "First occurrence of a †coccolepidid fish (?Chondrostei: †Coccolepididae) from the Upper Lias (Toarcian, Early Jurassic) of southern Germany". Palaeontologia Electronica. 27 (1): 16–23.
- ^ van Loon, A. J. (2013). "Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion". Palaeobiodiversity and Palaeoenvironments. 93 (1): 103–109. Bibcode:2013PdPe...93..103V. doi:10.1007/s12549-012-0112-6. S2CID 199406163.
- ^ Reisdorf, A. G.; Anderson, G. S.; Bell, L. S.; Klug, C.; Schmid-Röhl, A.; Röhl, H. J.; Wyler, D. (2014). "Reply to "Ichthyosaur embryos outside the mother body: not due to carcass explosion but to carcass implosion" by van Loon (2013)". Palaeobiodiversity and Palaeoenvironments. 94 (3): 487–494. Bibcode:2014PdPe...94..487R. doi:10.1007/s12549-014-0162-z. S2CID 129387302. Retrieved 2 April 2022.
- ^ a b c d Dick, D.G. (2015). "An Ichthyosaur Carcass-Fall Community from the Posidonia Shale (Toarcian) of Germany". PALAIOS. 30 (2): 353–361. Bibcode:2015Palai..30..353D. doi:10.2110/palo.2014.095. S2CID 129077450. Retrieved 2 April 2022.
- ^ Eriksson, M. E.; De La Garza, R.; Horn, E.; Lindgren, J. (2022). "A review of ichthyosaur (Reptilia, Ichthyopterygia) soft tissues with implications for life reconstructions". Earth-Science Reviews. 226 (1): 103–124. Bibcode:2022ESRv..22603965E. doi:10.1016/j.earscirev.2022.103965. S2CID 246846785.
- ^ a b Cooper, Samuel. L. A.; Smith, R. E.; Martill, D. M. (2024). "Dietary tendencies of the Early Jurassic pterosaurs Campylognathoides Strand, 1928, and Dorygnathus Wagner, 1860, with additional evidence for teuthophagy in Pterosauria". Journal of Vertebrate Paleontology. 44 (2). Bibcode:2024JVPal..44E3577C. doi:10.1080/02724634.2024.2403577.
- ^ a b c d e f g h i Böhm, F.; Brachert, T. C. (1993). "Deep-water stromatolites and Frutexites Maslov from the early and Middle Jurassic of S-Germany and Austria". Facies. 28 (1): 145–168. Bibcode:1993Faci...28..145B. doi:10.1007/bf02539734. S2CID 129365360. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k l m n o p q r Riegraf, W (1985). "Mikrofauna, Biostratigraphie, und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten". Tübinger Mikropaläontologische Mitteilungen. 3 (1): 1–232.
- ^ a b c d e f g h i j k l m n o p q r Ebli, O. (1989). "Foraminiferen und Coccolithen aus den Lias-Epsilon-Schiefern der Unkener Mulde (Tirolikum, Nördliche Kalkalpen)" (PDF). Mitt. Bayer. Staatsslg. Paläont. Hist. Geol. 29 (1): 61–83. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n o p Riegraf, W. (1985). "Biostratigraphie, Fauna und Mikropaläontologie des Untertoarcium-Profiles von Unterstürmig (Oberfranken, Süddeutschland)". Geologische Blätter für Nordost-Bayern. 34 (1): 241–272. Retrieved 20 February 2022.
- ^ a b Feist-Burkhardt, S.; Wille, W. (1992). "Jurassic palynology in southwest Germany–state of the art". Cahiers de Micropaléontologie (2): 13–16. Retrieved 3 March 2022.
- ^ a b c d e f g h i Wille, W. (1982). "Evolution and ecology of Upper Liassic dinoflagellates from southwest Germany". Neues Jahrbuch für Geologie und Paläontologie. 164 (1): 74–82. doi:10.1127/njgpa/164/1982/74.
- ^ a b Wille, W. (1979). "Dinoflagellates from the Lias of SW Germany [Dinoflagellaten aus dem Lias Sмdwestdeutschlands]". Neues Jahrbuch für Geologie und Paläontologie. 158 (2): 221–258. doi:10.1127/njgpa/158/1979/221.
- ^ a b c d e f g h i j k l m Ajuaba, Stephen; Sachsenhofer, Reinhard F.; Galasso, Francesca; Garlichs, Thorsten U.; Gross, Doris; Schneebeli-Hermann, Elke; Misch, David; Oriabure, Jonathan E. (27 March 2024). "The Toarcian Posidonia Shale at Salem (North Alpine Foreland Basin; South Germany): hydrocarbon potential and paleogeography". International Journal of Earth Sciences. 113 (8): 2093–2130. Bibcode:2024IJEaS.113.2093A. doi:10.1007/s00531-024-02392-z. ISSN 1437-3262.
- ^ a b c d e f g h i j k l m Prauss, M.; Ligouis, B.; Luterbacher, H. (1991). "Organic matter and palynomorphs in the 'Posidonienschiefer'(Toarcian, Lower Jurassic) of southern Germany". Geological Society, London, Special Publications. 58 (1): 335–351. Bibcode:1991GSLSP..58..335P. doi:10.1144/GSL.SP.1991.058.01.21. S2CID 130285775. Retrieved 3 March 2022.
- ^ a b c d e f Lund, J.J. (1996). "Jurassic and Cretaceous microfloras used to determine the stratigraphical succession of steeply dipping strata along the Prahl Fault, Dobenwohr Hafgraben, northeast Bavaria". Neues Jahrbuch für Geologie und Paläontologie. 200 (1): 133–147. doi:10.1127/njgpa/200/1996/133. Retrieved 3 March 2022.
- ^ a b c d e f Gotch, H. (1964). "Planktonische Kleinformen aus dem Lias-Dogger Grenzbereich Nord- und Süddeutschlands". Neues Jahrb. Geol. Paläontol. 119 (3): 113–133. Retrieved 3 March 2022.
- ^ Schouten, S.; van Kaam-Peters, H. M.; Rijpstra, W. I. C.; Schoell, M.; Damste, J. S. S. (2000). "Effects of an oceanic anoxic event on the stable carbon isotopic composition of early Toarcian carbon". American Journal of Science. 300 (1): 1–22. Bibcode:2000AmJS..300....1S. doi:10.2475/ajs.300.1.1. hdl:1874/4290. Archived from the original on 3 March 2022. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n o p q Madler, K.A. (1963). "Organic microstructures of the Posidonia Shale. [ III. Die figurierten organischen Bestandteile der Posidonoenschiefer]". Beihefte zum Geologischen Jahrbuch. 58 (1): 287–406. Retrieved 13 October 2021.
- ^ a b c d e f Visentin, S.; Erba, E.; Mutterlose, J. (2019). "Biostratigraphic constraints of the Early Toarcian Oceanic Anoxic Event: new data from calcareous nannofossil investigations of Boreal and Tethyan sections". PeerJ Preprints. 299 (23): 11. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n o p q r s t u Ebli, O.; Draxler, I.; Klein, P.; Kodina, L. A.; Lobitzler, H. (1991). "Fazies, Paläontologie und organische Geochemie der Sachranger Schiefer (Untertoarcium) im Mittelabschnitt der Nördlichen Kalkalpen zwischen Isar und Saalach" (PDF). Jahrbuch der Geologischen Bundesanstalt. 134 (1): 5–14. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m Visentin, S. (2020). Calcareous nannofossil biostratigraphy and taxonomy across the Early Toarcian Oceanic Anoxic Event: a comparison between Tethyan and Boreal sections. Tesi di Dottorato. IRIS Institutional Research Information System (Thesis). pp. 1–202. doi:10.13130/visentin-stefano_phd2020-02-04. Retrieved 2 October 2023.
- ^ a b Grün, W.; Grün, P.; Prins, F. (1974). "Zweili Coccolithophoriden aus dem Lias epsilon von Holzmaden (Deutschland)". Neues Jahrb. Geol. Paläontol. Abh. 147 (2): 294–328.
- ^ Visentin, S.; Faucher, G.; Mattioli, E.; Erba, E. (2021). "Taxonomic revision of the genus Carinolithus (Early-Middle Jurassic) based on morphometric analyses and diagenesis observations: Implications for biostratigraphy and evolutionary trends". Marine Micropaleontology. 162 (1): 412–432. Bibcode:2021MarMP.162j1950V. doi:10.1016/j.marmicro.2020.101950. hdl:2434/796274. S2CID 229440280. Retrieved 3 March 2022.
- ^ a b c d Madler, K.A. (1969). "Tasmanites and related planktonic organisms from the Posidonian Shales. [ Tasmanites und verwandte planktonformen aus dem Posidonienschiefer-Meer. ]". International Conference on Planktonic Microfossils. 1 (23): 375–377. Retrieved 3 March 2022.
- ^ Wetzel, O. (1958). "New microfossils from the Lias, especially from the Posidonian Shale. [ Neue mikrofossilien aus dem Lias, insbesondere aus dem Posidonienschiefer. ]". Paläontologische Zeitschrift. 32 (1): 15. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n o Galasso, F.; Schmid-Röhl, A.; Feist-Burkhardt, S.; Bernasconi, S. M.; Schneebeli-Hermann, E. (2021). "Changes in organic matter composition during the Toarcian Oceanic Anoxic Event (T-OAE) in the Posidonia Shale Formation from Dormettingen (SW-Germany)". Palaeogeography, Palaeoclimatology, Palaeoecology. 569 (1): 675–689. Bibcode:2021PPP...56910327G. doi:10.1016/j.palaeo.2021.110327. hdl:20.500.11850/474401. S2CID 233550926.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt Riegraf, W.; Werner, G.; Lörcher, F. (1984). Der Posidonienschiefer: Biostratigraphie, Fauna und Fazies des südwestdeutschen Untertoarciums (Lias e) (PDF). Berlin: F. Enke. ISBN 343294361X. Retrieved 20 February 2022.
- ^ a b c d e Rodríguez-Tovar, F. J. (2021). "Ichnology of the Toarcian Oceanic Anoxic Event: An understimated [sic] tool to assess palaeoenvironmental interpretations". Earth-Science Reviews. 216 (1): 122–146. Bibcode:2021ESRv..21603579R. doi:10.1016/j.earscirev.2021.103579. S2CID 233849558. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n Kuhn, O.; Etter, W. (1994). "Der Posidonienschiefer der Nordschweiz: Lithostratigraphie, Biostratigraphie und Fazies". Eclogae Geologicae Helvetiae. 87 (1): 113–138. Retrieved 3 March 2022.
- ^ Simpson, S. (1956). "On the trace-fossil Chondrites". Quarterly Journal of the Geological Society. 112 (3): 475–499. Bibcode:1956QJGS..112..475S. doi:10.1144/GSL.JGS.1956.112.01-04.23. S2CID 129365180. Retrieved 3 March 2022.
- ^ Van Acken, D.; Tütken, T.; Daly, J. S; Schmid-Röhl, A.; Orr, P. J. (2019). "Rhenium‑osmium geochronology of the Toarcian Posidonia Shale, SW Germany". Palaeogeography, Palaeoclimatology, Palaeoecology. 534 (2): 416–428. Bibcode:2019PPP...53409294V. doi:10.1016/j.palaeo.2019.109294. S2CID 201318850. Retrieved 3 March 2022.
- ^ Izumi, K. (2012). "Formation process of the trace fossil Phymatoderma granulata in the Lower Jurassic black shale (Posidonia Shale, southern Germany) and its paleoecological implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 353 (2): 116–122. Bibcode:2012PPP...353..116I. doi:10.1016/j.palaeo.2012.07.021. Retrieved 3 March 2022.
- ^ Izumi, K. (2013). "Geochemical composition of faecal pellets as an indicator of deposit-feeding strategies in the trace fossil Phymatoderma". Lethaia. 46 (4): 496–507. Bibcode:2013Letha..46..496I. doi:10.1111/let.12028. Retrieved 3 March 2022.
- ^ Savrda, C. E.; Bottjer, D. J. (1989). "Anatomy and Implications of Bioturbated Beds in "Black Shale" Sequences: Examples from the Jurassic Posidonienschiefer (Southern Germany)". PALAIOS. 4 (4): 330–341. Bibcode:1989Palai...4..330S. doi:10.2307/3514557. JSTOR 3514557. OSTI 7154351. Retrieved 3 March 2022.
- ^ Krainer, K.; Mostler, Helfried; Haditsch, J. G. (1994). "Jurassische Bekkenbildung in den Nördlichen Kalkalpen bei Lofer (Salzburg) unter besonderer Berücksichtigung der Manganerz-Genese [Annotated record of the detailed examination of Mn deposits from the Northern Kalkalpen near Lofer (Salzburg, Austria)]" (PDF). Abhandlungen der Geologischen Bundesanstalt. 50 (1): 257–293. Retrieved 3 March 2022.
- ^ a b Wolfer, O. (1913). "Die Bryozoen des schwäbischen Jura" (PDF). Palaeontographica. 18 (1): 115–174. Retrieved 6 January 2024.
- ^ a b c d e Röhl, H. J.; Schmid-Röhl, A.; Oschmann, W.; Frimmel, A.; Schwark, L. (2001). "The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate". Palaeogeography, Palaeoclimatology, Palaeoecology. 165 (2): 27–52. Bibcode:2001PPP...165...27R. doi:10.1016/S0031-0182(00)00152-8. Retrieved 3 March 2022.
- ^ Jefferies, R. P. S.; Minton, P. (1965). "The mode of life of two Jurassic species of Posidonia (Bivalvia)". Palaeontology. 8 (1): 156–185. Retrieved 3 March 2022.
- ^ Hauff, B. (1921). "Untersuchung der Fossilfundstätten von Holzmaden im Posidonienschiefer des Oberen Lias Württembergs". Palaeontographica. 64 (1): 1–42. Retrieved 3 March 2022.
- ^ a b Röhl, H. J. (1998). "Hochauflösende palökologische und sedimentologische Untersuchungen im Posidonienschiefer (Lias e)[epsilon)] von SW-Deutschland". Tübinger Geowissenschaftliche Arbeiten, Reihe A. 48 (1): 1–189. Retrieved 3 March 2022.
- ^ a b Arp, G.; Gropengießer, S.; Schulbert, C.; Jung, D.; Reimer, A. (2021). "Biostratigraphy and sequence stratigraphy of the Toarcian Ludwigskanal section (Franconian Alb, Southern Germany)". Zitteliana. 95 (1): 95–57. doi:10.3897/zitteliana.95.56222. S2CID 237384737. Retrieved 3 March 2022.
- ^ a b Lutikov, O.A.; Arp, G. (2020). "Revision Monotis substriata (Münster, 1831) and new species of bivalve molluscs in the Lower Toarcian in northern Russia and southern Germany (family Oxytomidae Ichikawa, 1958)". Jurassic System of Russia: Problems of Stratigraphy and Paleogeography. 2 (1): 125–131. Retrieved 3 March 2022.
- ^ Lutikov, O. A.; Arp, G. (2022). "Taxonomy and Biostratigraphic Significance of the Toarcian Bivalves of the Genus Meleagrinella Whitfield, 1885". Stratigraphy and Geological Correlation. 30 (supplement issue 1): S47 – S77. Bibcode:2022SGC....30S..47L. doi:10.1134/S0869593823010045. S2CID 257605092.
- ^ Caswell, B. A.; Coe, A. L.; Cohen, A. S. (2009). "New range data for marine invertebrate species across the early Toarcian (Early Jurassic) mass extinction". Journal of the Geological Society. 166 (5): 859–872. Bibcode:2009JGSoc.166..859C. doi:10.1144/0016-76492008-0831. S2CID 140675044. Retrieved 3 March 2022.
- ^ a b Ros-Franch, S.; Damborenea, S. E.; Márquez-Aliaga, A.; Manceñido, M. O. (2015). "Parainoceramya n. gen. for Parainoceramus Cox, 1954 (ex Voronetz, 1936) partim (Bivalvia, Jurassic)". Journal of Paleontology. 89 (1): 20–27. Bibcode:2015JPal...89...20R. doi:10.1017/jpa.2014.3. hdl:11336/13738. S2CID 86571525. Retrieved 3 March 2022.
- ^ Hille, P. J. (2002). "De fossielen uit de Posidonienschiefer van Holzmaden en omgeving" (PDF). GEA. 35 (2): 8–17. Retrieved 3 March 2022.
- ^ a b c Teichert, S.; Nützel, A. (2015). "Early Jurassic anoxia triggered the evolution of the oldest holoplanktonic gastropod Coelodiscus minutus by means of heterochrony". Acta Palaeontologica Polonica. 60 (2): 269–276. Retrieved 3 March 2022.
- ^ a b c Bandel, K.; Hemleben, C. (1987). "Jurassic heteropods and their modern counterparts (planktonic Gastropoda, Mollusca)". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 174 (2): 1–22. Bibcode:1987NJGPA.174....1B. doi:10.1127/njgpa/174/1987/1. Retrieved 3 March 2022.
- ^ Brosamlen, R. (1909). "Beitrag zur Kenntnis der Gastropoden des schwäibischen Jura". Palaeontographica. 56 (1): 177–321.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z Maisch, Michael W. (2021). "Neubewertung der Ammonitenfauna der Posidonienschiefer-Formation (Unterjura, Toarcium) von Baden-Württemberg, Südwestdeutschland". Jahreshefte der Gesellschaft für Naturkunde in Württemberg. 177 (1): 265–347. doi:10.26251/jhgfn.177.2021.265-347. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k l m Hille, P. J. (2002). "De fossielen uit de Posidonienschiefer van Holzmaden en omgeving" (PDF). GEA. 35 (2): 8–17. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k Jacobshagen, V. (1965). "Die Allgäu-Schichten (Jura-Fleckenmergel) zwischen Wettersteingebirge und Rhein" (PDF). Geol. Bundesanstalt. 108 (1): 1–114. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k Delsate, D.; Weis, R. (2010). "La Couche à Crassum (Toarcien moyen) au Luxembourg: stratigraphie et faunes de la coupe de Dudelange-Zoufftgen". Ferrantia. 62 (2): 35–62. Retrieved 2 March 2022.
- ^ a b c d e f g h i Riegraf, W. (1980). "Revision der belemniten des Schwäbischen Jura". Palaeontographica. 169 (2): 128–206. Retrieved 2 March 2022.
- ^ a b c d e f g h i Schlegelmilch, R. (1998). "Formenkundlicher Teil. In Die belemniten des süddeutschen Jura". Spektrum Akademischer Verlag, Heidelberg. 87 (1): 39–89. doi:10.1007/978-3-8274-3083-0. ISBN 978-3-8274-3082-3. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k Tripp, K. (1938). "Der Stammbaum der belemniten des Lias Schwabens". Paläontologische Zeitschrift. 19 (4): 180–198. Bibcode:1938PalZ...19..180T. doi:10.1007/BF03042240. S2CID 129424006. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k Schulbert, C. (2001). Die Ammonitenfauna und Stratigraphie der Tongrube Mistelgau bei Bayreuth (Oberfranken) (4 ed.). Berlin: Digital Druck AG. Retrieved 2 March 2022.
- ^ a b c d e f g h i Pompeckj, J. (1901). "Der Jura zwischen Regensburg und Regenstauf: Geognostische Jahreshefte" (PDF). Bayerischen Staatsministeriums des Innern. 14 (3): 1–290. Retrieved 2 March 2022.
- ^ Landman, N. H.; Saunders, W. B.; Winston, J. E; Harries, P. J. (2010). "Incidence and Kinds of Epizoans on the Shells of Live Nautilus". Nautilus. 2 (1): 163–177. doi:10.1007/978-90-481-3299-7_10. Retrieved 2 March 2022.
- ^ Fischer, K. C.; KC, F. (1981). "Chitinobelus acifer ngn sp., ein ungewöhnlicher Belemnit aus dem Lias epsilon von Holzmaden". Neues Jahrbuch für Geologie und Paläontologie - Monatshefte. 78 (1): 141–148. doi:10.1127/njgpm/1981/1981/141. Retrieved 2 March 2022.
- ^ Bode, A. (1933). "Chondroteuthis wunnenbergi ngn sp., eine neue Belemnoideenform, in gunstiger Erhaltung". Sonderabdruck aus dem 25. Jahresbericht des Niedersachsischen geologischen Vereins zu Hannover (Geologische Abteilung der Naturhistorischen Gesellschaft zu Hannover). 25 (1): 33–66.
- ^ Fuchs, D.; Donovan, D. T.; Keupp, H. (2013). "Taxonomic revision of "Onychoteuthis" conocauda Quenstedt, 1849 (Cephalopoda: Coleoidea)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 270 (3): 245–255. Bibcode:2013NJGPA.270..245F. doi:10.1127/0077-7749/2013/0368. Retrieved 2 March 2022.
- ^ Neumeister, S.; Gratzer, R.; Algeo, T. J.; Bechtel, A.; Gawlick, H. J.; Newton, R. J.; Sachsenhofer, R. F. (2015). "Oceanic response to Pliensbachian and Toarcian magmatic events: Implications from an organic-rich basinal succession in the NW Tethys". Global and Planetary Change. 126 (3): 62–83. Bibcode:2015GPC...126...62N. doi:10.1016/j.gloplacha.2015.01.007. Retrieved 2 March 2022.
- ^ a b c d e f g Mutterlose, J.; Klopschar, M.; Visentin, S. (2022). "Ecological Adaptation of marine Floras and Faunas Across the Early Jurassic Toarcian Oceanic Anoxic Event–a Case Study from Northern Germany". SSRN. 34 (1): 1–43. Bibcode:2022PPP...60211176M. doi:10.1016/j.palaeo.2022.111176. SSRN 4039594. Retrieved 2 March 2022.
- ^ a b c Von Michael, W. Maisch (2018). "Neue Dactylioceratiden (Cephalopoda, Ammonitina) aus dem untersten Toarcium (Tenuicostatum-Zone) von Baden-Württemberg, Südwestdeutschland Jh". Ges. Naturkde. Württemberg174Stuttgart. 174 (1): 143–172. Retrieved 2 March 2022.
- ^ a b Weiß, K.P.; Freytag, D. (1991). "Frechiella subcarinata (Young & Bird, 1822), ein bemerkenswerter Ammonit aus dem höheren Untertoarcium (bifrons-Zone) der Fränkischen Alb". Geologische Blätter für Nordost-Bayern. 41 (2): 125–132.
- ^ a b c d Fuchs, D.; Weis, R. (2008). "Taxonomy, morphology and phylogeny of Lower Jurassic loligosepiid coleoids (Cephalopoda)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 249 (1): 93–112. Bibcode:2008NJGPA.249...93F. doi:10.1127/0077-7749/2008/0249-0093. Retrieved 2 March 2022.
- ^ a b c d Riegraf, W. (1997). "On the proposed conservation of the names Geopeltis (Regteren Altena, 1949), Geoteuthis (Muenster, 1843), Jeletzkyteuthis (Doyle, 1990), Loligosepia (Quenstedt, 1839), Parabelopeltis (Naef, 1921), Paraplesioteuthis (Naef, 1921) and Belemnotheutis montefiorei (Buckman, 1880) (Mollusca, Coleoidea)". The Bulletin of Zoological Nomenclature. 54 (2): 184. doi:10.5962/bhl.part.105. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k l Wellnhofer, P.; Vahldiek, B.W. (1986). "Ein Flugsaurier-Rest aus dem Posidonienschiefer (Unter-Toarcium) von Schandelah bei Braunschweig". Paläontologische Zeitschrift. 60 (1): 329–340. Bibcode:1986PalZ...60..329W. doi:10.1007/BF02985677. S2CID 129838740. Retrieved 10 February 2022.
- ^ Beyermann, K.; Hasenmaier, D. (1977). "Identification of 180 million years old, probably unchanged melanine". NASA Technical Reports Server. 21 (1): 67–72. Retrieved 2 March 2022.
- ^ Keupp, H.; Kohring, R. (1993). "Ein Magensteinfund aus dem Lias Epsilon von Altdorf (Mittelfranken)". Geologische Blätter für Nordost-Bayern und angrenzende Gebiete. 43 (3): 95–104.
- ^ a b Riegraf, W. (1987). "On Lower and Upper Jurassic dibranchiate cephalopods from Germany and England" (PDF). Paläontologische Zeitschrift. 61 (1): 261–272. Bibcode:1987PalZ...61..261R. doi:10.1007/BF02985908. S2CID 129847245. Retrieved 2 March 2022.
- ^ a b Fuchs, D.; Keupp, H.; Schweigert, G. (2013). "First record of a complete arm crown of the Early Jurassic coleoid Loligosepia (Cephalopoda)". Paläontologische Zeitschrift. 87 (3): 431–435. Bibcode:2013PalZ...87..431F. doi:10.1007/s12542-013-0182-4. S2CID 129112888. Retrieved 2 March 2022.
- ^ a b Doguzhaeva, L. A; Mutvei, H. (2003). "Gladius composition and ultrastructure in extinct squid-like coleoids: Loligosepia, Trachyteuthis and Teudopsis". Revue de Paléobiologie. 22 (2): 877–894.
- ^ Maisch, M. W.; Hoffmann, R. (2017). "Lytoceratids (Cephalopoda, Ammonoidea) from the Lower Posidonienschiefer Formation (Tenuicostatum Zone, Early Jurassic) of Baden-Württemberg (south-western Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 283 (3): 275–289. Bibcode:2017NJGPA.283..275M. doi:10.1127/njgpa/2017/0640. Retrieved 2 March 2022.
- ^ a b Münster, G.; Graf, Z. (1843). "Die schalenlosen Cephalopoden im unteren Jura, den Lias-Schiefern von Franken und Schwaben". Beiträge zur Petrefaktenkunde. 6 (2): 57–77.
- ^ Riegraf, W.; Reitner, J. (1979). "Die" Weichteilbelemniten" des Posidonienschiefers (Untertoarcium) von Holzmaden (Baden-Württemberg) sind Fälschungen". Neues Jahrbuch für Geologie und Paläontologie. 56 (5): 291–304. Retrieved 2 March 2022.
- ^ a b c d Schulbert, C. (2001). "Die Ammonitenfauna und Stratigraphie der Tongrube Mistelgau bei Bayreuth (Oberfranken)" (PDF). Beihefte zu den Berichten der Naturwissenschaftlichen Gesellschaft Bayreuth. 4 (1): 1–183. Retrieved 2 March 2022.
- ^ Fuchs, Dirk; Weis, Robert; Thuy, Ben (2024). "Simoniteuthis, a new vampyromorph coleoid with prey in its arms from the Early Jurassic of Luxembourg". Swiss Journal of Palaeontology. 143 (1): 6. Bibcode:2024SwJP..143....6F. doi:10.1186/s13358-024-00303-y.
- ^ Reitner, J.; Engeser, T. (1982). "Zwei neue Coleoidea-Arten aus dem Posidonienschiefer (Untertoarcium) aus der Gegend von Holzmaden (Baden-Württemberg)". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 84 (19): 231–242. Retrieved 2 March 2022.
- ^ Fuchs, D.; Weis, R. (2010). "Taxonomy, morphology and phylogeny of Lower Jurassic teudopseid coleoids (Cephalopoda)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 257 (3): 351–366. Bibcode:2010NJGPA.257..351F. doi:10.1127/0077-7749/2010/0083. Retrieved 2 March 2022.
- ^ a b Schweigert, G. (2007). "Juracyclus posidoniae n. gen. and sp., the first cycloid arthropod from the Jurassic". Journal of Paleontology. 81 (1): 213–215. doi:10.1666/0022-3360(2007)81[213:JPNGAS]2.0.CO;2. S2CID 131620349. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k Knitter, H. (1983). "Biostratigraphische Untersuchungen mit ostracoden im Toarcien Süddentschlands Facies". Erlangen. 8 (2): 213–262.
- ^ a b Knitter, H.; Riegraf, W. (1984). "Biostratigraphie (Cephalopoden, ostracoden ) des Oberen Toarcium von Blumberg Achdorf, Wutachs und Weilheim/Teck (Baden-Württemberg)". Jahrbuch der Geologischen Landesamt Baden-Württemberg. 26 (2): 57–97. Retrieved 2 March 2022.[permanent dead link ]
- ^ a b Malz, H. (1975). "Eine Entwicklungsreihe "vallater" Ogmoconchen (ostracoda) im S-deutschen Lias". Senckenbergiana Lethaea. 55 (6): 485–505.
- ^ Malz Zur Kenntnis, H. (1966). "ostracoden-Arten der Gattungen Kinkelinella und Praeschuleridea". Senckenbergiana Lethaea. 47 (4): 385–404.
- ^ Fischer, W. (1961). "Neue Arten ostracoden-Gattung Polycope SARS (1865) aus dem Oberen Lias (Württemberg)". Neues Jahrbuch für Geologie und Paläontologie. 8 (2): 497–501.
- ^ Förster, R. (1967). "Zur Kenntnis natanter Jura-Dekapoden" (PDF). Mitteilungen der Bayerischen Staatssammlung für Paläontologie und historische Geologie. 7 (3): 157–174. Retrieved 2 March 2022.
- ^ a b Haug, J. T.; Haug, C.; Schweigert, G. (2019). "The oldest "intermetamorphic" larva of an achelatan lobster from the Lower Jurassic Posidonia Shale, South Germany" (PDF). Acta Palaeontologica Polonica. 64 (4): 685–692. doi:10.4202/app.00627.2019. S2CID 207820936. Retrieved 2 March 2022.
- ^ a b c d Ilger, J.M. (2014). "Insekten und andere Gliederfüßer". _niedersachsens Versunkene Urwelt. 1 (1): 10–18.
- ^ a b c Audo, D. (2016). "Tonneleryon, a new gregarious polychelidan lobster from the early Toarcian Posidonia Shale of Holzmaden (Germany)". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 280 (3): 285–298. Bibcode:2016NJGPA.280..285A. doi:10.1127/njgpa/2016/0580. Retrieved 2 March 2022.
- ^ a b Beurlen, K. (1930). "Nachträge zur Decapodenfauna des schwäbischen Jura. I. Neue Decapodenfunde aus dem Posidonienschiefer von Holzmaden" (PDF). Neues Jahrbuch für Mineralogie, Geologie und Paläontologie. 64 (3): 219–234. Retrieved 2 March 2022.
- ^ a b Devillez, J.; Charbonnier, S. (2019). "Review of the Early and Middle Jurassic erymid lobsters (Crustacea: Decapoda) Révision des Érymides (Crustacea: Decapoda) du Jurassique inférieur et moyen". Bulletin de la Société Géologique de France. 190 (1): 6–21. doi:10.1051/BSGF/2019005. S2CID 196643332.
- ^ Audo, D.; Williams, M.; Charbonnier, S.; Schweigert, G. (2017). "Gabaleryon, a new genus of widespread early Toarcian polychelidan lobsters". Journal of Systematic Palaeontology. 15 (3): 205–222. Bibcode:2017JSPal..15..205A. doi:10.1080/14772019.2016.1167786. S2CID 87613086. Retrieved 2 March 2022.
- ^ Aud, D.; Haug, J. T.; Haug, C.; Charbonnier, S.; Schweigert, G.; Müller, C. H.; Harzsch, S. (2016). "On the sighted ancestry of blindness–exceptionally preserved eyes of Mesozoic polychelidan lobsters". Zoological Letters. 2 (1): 13. doi:10.1186/s40851-016-0049-0. PMC 4947519. PMID 27429789.
- ^ Schweigert, G. (2018). "Neufund von Glypheopsis grandichela im Posidonienschiefer". Fossilien. 35 (6): 56–57.
- ^ Frentzen, K. (1937). "Paläontologische Skizzen aus den Badischen Landessamlungen für Naturkunde, Karlsruhe i. Br. II. Mecochirus eckerti nov. spec. aus dem Lias Epsilon (Posidonienschiefer) von Langenbrücken". Carolinea. 2 (2): 103–105.
- ^ Schweigert, G.; Röper, M. (2001). "Neue Krebse der Gattung Palaeastacus (Crustacea: Decapoda: Erymidae) aus ober jurassischen Plattenkalken Süddeutschlands" (PDF). Staatliches Museum für Naturkunde. 313 (5): 1–12. Retrieved 2 March 2022.
- ^ Seilacher, A.; Reif, W. E.; Westphal, F. (1985). "Sedimentological, ecological and temporal patterns of fossil Lagerstätten". Philosophical Transactions of the Royal Society of London. 311 (11): 5–24. JSTOR 2396966.
- ^ Beurlen, K. (1944). "Neue Reste von Proeryon (Crustacea Decapoda, Eryonidea)". Neues Jahrb Miner Geolog Paläont. 88 (1): 374–384.
- ^ a b Audo, D.; Schweigert, G.; Charbonnier, S. (2019). "Proeryon, a geographically and stratigraphically widespread genus of polychelidan lobsters". Annales de Paléontologie. 106 (2): 102–118. Bibcode:2020AnPal.10602376A. doi:10.1016/j.annpal.2019.102376. S2CID 213469487. Retrieved 2 March 2022.
- ^ Beurlen, K. (1928). "Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammenden". Palaeontographica. 70 (3): 115–278. Retrieved 2 March 2022.
- ^ a b Schweigert, G. (2003). "The lobster genus Uncina Quenstedt, 1851 (Crustacea: Decapoda: Astacidea: Uncinidae) form the Lower Jurassic". Stuttgarter Beiträge zur Naturkunde. 332 (4): 1–43.
- ^ Bode, A. (1951). "Ein liassischer Scorpionide". Paläontologische Zeitschrift. 24 (2): 58–65. Bibcode:1951PalZ...24...58B. doi:10.1007/BF03044552. S2CID 140650635. Retrieved 2 March 2022.
- ^ Dunlop, J. A.; Kamenz, C.; Scholtz, G. (2007). "Reinterpreting the morphology of the Jurassic scorpion Liassoscorpionides". Arthropod Structure & Development. 36 (2): 245–252. Bibcode:2007ArtSD..36..245D. doi:10.1016/j.asd.2006.09.003. PMID 18089103. Retrieved 2 March 2022.
- ^ a b Ansorge, J. (2003). "Insects from the Lower Toarcian of Middle Europe and England". Proceedings of the Second Palaeoentomological Congress, Acta Zoologica Cracoviensia. 46 (1): 291–310. Retrieved 30 July 2021.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du dv dw dx dy dz ea eb ec ed ee ef eg eh ei ej ek el em en eo ep eq er es et eu ev ew ex ey ez fa fb fc fd fe ff fg fh fi fj fk fl fm fn fo fp fq fr fs ft fu Bode, A. (1953). "Die Insektenfauna des Ostniedersächsischen Oberen Lias" (PDF). Palaeontographica Abteilung A. 103 (1): 1–375. Retrieved 2 March 2022.
- ^ a b Bode, A. (1905). "Orthoptera and Neuroptera from the Upper Lias of Braunschweig". Yearbook of the Royal Prussian State Geological Institute and Mining Academy in Berlin. 25 (1): 218–245.
- ^ Henrotay, M.; Nel, A.; Jarzembowski, E. A. (1997). "New Protomyrmeleontid Damselflies from the Triassic of Australia and the Liassic of Luxembourg, with the description of Tillyardomyrmeleon petermilleri gen. nov. & spec. nov. (Archizygoptera: Protomyrmeleontidae)". Odonatologica. 26 (4): 395–404. Retrieved 2 March 2022.
- ^ Nel, A.; Henrotay, M. (1992). "Les Protomyrmeleontidae (Odonatoptera, Odonata, Archizygoptera stat. rest.): état actuel des connaissances". Annales de Paléontologie. 78 (2): 1–47.
- ^ a b Handlirsch, A. (1939). "Neue Untersuchungen über die fossilen Insekten mit Ergänzungen und Nachträgen sowie Ausblicken auf phylogenetische, palaeogeographische und allgemein biologische Probleme". Annalen des Naturhistorischen Museums in Wien. 2 (3): 1–240. JSTOR 41768379.
- ^ Nel, A.; Bechly, G.; Delclòs, X.; Huang, D. (2009). "New and poorly known Mesozoic damsel-dragonflies (Odonata: Isophlebioidea: Campterophlebiidae, Isophlebiidae)". Palaeodiversity. 2 (4): 209–232. Retrieved 2 March 2022.
- ^ Nel, A.; Weis, R. (2017). "A new Early Jurassic damselfly from the Grand Duchy of Luxembourg (Odonata: Campterophlebiidae)". Alcheringa. 41 (5): 378–382. Bibcode:2017Alch...41..378N. doi:10.1080/03115518.2017.1289417. S2CID 132602020. Retrieved 2 March 2022.
- ^ Fleck, G.; Bechly, G.; Martinez-Delclos, X.; Jarzembowski, E.; Coram, R.; Nel, A. (2003). "Phylogeny and classification of the Stenophlebioptera (Odonata: Epiproctophora)". Annales de la Société Entomologique de France. 39 (1): 55–93. doi:10.1080/00379271.2003.10697363. S2CID 85417279. Retrieved 2 March 2022.
- ^ Etter, W.; Kuhn, O. (2000). "An articulated dragonfly (Insecta, Odonata) from the Upper Liassic Posidonia Shale of Northern Switzerland". Palaeontology. 43 (3): 967–977. Bibcode:2000Palgy..43..967E. doi:10.1111/1475-4983.00157. S2CID 140165815. Retrieved 2 March 2022.
- ^ Ansorge, J. (1999). "Heterophlebia buckmani (Brodie 1845) (Odonata: "Anisozygoptera") - das erste Insekt aus dem untertoarcischen Posidonienschiefer von Holzmaden (Württemberg, SW Deutschland)". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 275 (1): 1–9. Retrieved 2 March 2022.
- ^ a b c d e f Nel, A.; Martínez-Delclòs, X.; Paicheler, J. C.; Henrotay, M. (1993). "Les "Anisozygoptera" fossiles Phylogenie et classification (Odonata)". Martinia. 3 (4): 1–311. Retrieved 2 March 2022.
- ^ Bechly, G. (2018). "First record and a new species of the fossil dragonfly genus Proinogomphus (Odonata: Liassogomphidae) from the Early Jurassic of Bascharage in the Grand Duchy of Luxembourg". Zootaxa. 4450 (2): 108–114. doi:10.11646/zootaxa.4450.1.7. PMID 30313860. S2CID 52977117. Retrieved 2 March 2022.
- ^ Ansorge, J.; Reich, M. (2018). "Komplette Libelle Sphenophlebia pommerana" (PDF). Fossilien. 35 (1): 60–61. Archived from the original (PDF) on 3 March 2022. Retrieved 2 March 2022.
- ^ Ansorge, J.; Reich, M. (2018). "Komplette Libelle Sphenophlebia pommerana" (PDF). Fossilien. 35 (1): 60–61. Archived from the original (PDF) on 3 March 2022. Retrieved 2 March 2022.
- ^ a b c d e Brachert, T.H. (1987). "Makrofossilführung der "Siemensi-Geoden" (Mittlerer Lias Epsilon, Unteres Toarcium) von Kerkhofen/Oberpfalz (Bayern): Neue Insekten- und Pflanzenfunde". Geologische Blätter NO-Bayern. 37 (4): 217–240.
- ^ a b c d e f Berger, G. (1989). "Über Insektenfunde beim Kanalbau". Fossilien. 6 (1): 44–47.
- ^ Ansorge, J. (1996). "Zur systematischen Position von Schesslitziella haupti Kuhn 1952 (Insecta: Phasmatodea) aus dem Oberen Lias von Nordfranken (Deutschland)". Paläontologische Zeitschrift. 70 (4): 475–479. doi:10.1007/BF02988086. Retrieved 2 March 2022.
- ^ a b c d e Vršanský, P.; Ansorge, J. (2007). "Lower Jurassic cockroaches (Insecta: Blattaria ) from Germany and England". African Invertebrates. 48 (1): 103–126. Retrieved 23 October 2021.
- ^ Szwedo, J. (2011). "The Coleorrhyncha (Insecta: Hemiptera) of the European Jurassic, with a description of a new genus from the Toarcian of Luxembourg". Volumina Jurassica. 9 (2): 3–20. Retrieved 2 March 2022.
- ^ Szwedo, J.; R., Weis; Nel, A. (2017). "A bizarre sternorrhynchan wing from the Lower Jurassic of Luxembourg (Hemiptera: Sternorrhyncha: Pincombeomorpha?)". Historical Biology. 31 (3): 806–812. doi:10.1080/08912963.2017.1395423. S2CID 90106633. Retrieved 2 March 2022.
- ^ a b Willmann, R. (1994). "Raphidiodea aus dem Lias und die Phylogenie der Kamelhalsfliegen (Insecta: Holometabola)". Paläontologische Zeitschrift. 68 (2): 167–197. doi:10.1007/BF02989439. S2CID 128926273. Retrieved 2 March 2022.
- ^ Nel, A.; Petrulevicius, J. F.; Henrotay., M. (2004). "New Early Jurassic sawflies from Luxembourg: the oldest record of Tenthredinoidea (Hymenoptera: "Symphyta")". Acta Palaeontologica Polonica. 49 (2): 283–288. Retrieved 2 March 2022.
- ^ Zessin, W. (1985). "Neue oberliassische Apocrita und die Phylogenie der Hymenoptera". Deutsche Entomologische Zeitschrift. 32 (3): 129–142. doi:10.1002/mmnd.19850320118. Retrieved 2 March 2022.
- ^ a b Rasnitsyn, A. P.; Ansorge, J.; Zessin, W. (2003). "New hymenopterous insects (Insecta: Hymenoptera) from the lower Toarcian (Lower Jurassic) of Germany". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 227 (1–3): 321–342. Bibcode:2003NJGPA.227..321R. doi:10.1127/njgpa/227/2003/321.
- ^ a b c d e f g h Ponomarenko, A.G. (1995). "Upper Liassic neuropterans (Insecta) from Lower Saxony, Germany". Russian Entomological Journal. 4 (4): 73–89.
- ^ a b Ansorge, J.; Makarkin, V. N. (2020). "The oldest giant lacewings (Neuroptera: Kalligrammatidae) from the Lower Jurassic of Germany". Palaeoworld. 30 (2): 296–310. doi:10.1016/j.palwor.2020.07.001. S2CID 225633800. Retrieved 2 March 2022.
- ^ a b Ansorge, J.; Makarkin, V. N. (2020). "The oldest giant lacewings (Neuroptera: Kalligrammatidae) from the Lower Jurassic of Germany". Palaeoworld. 30 (2): 296–310. doi:10.1016/j.palwor.2020.07.001. S2CID 225633800. Retrieved 2 March 2022.
- ^ Nel, A.; Henrotay, M. (1994). "Les Chrysopidae Mésozoïques. État actuel des connaissances. Description d'un nouveau genre et nouvelle espèce dans le Jurassique inférieur (Lias) (Insecta: Neuroptera)". Annales de la Société Entomologique de France. 30 (2): 295–318. doi:10.1080/21686351.1994.12277709. Retrieved 2 March 2022.
- ^ Nel, A. (1996). "Un Tettigarctidae fossile du Lias européen (Cicadomorpha, Cicadoidea, Tettigarctidae)". École Pratique des Hautes Études, Biologie et Évolution des Insectes. 9 (6): 83–94.
- ^ a b Ansorge, J. (2003). "Upper Liassic Amphiesmenopterans (Trichoptera+ Lepidoptera) from Germany–a review". Acta Zoologica Cracoviensia. 46 (3): 285–290. S2CID 55218822.
- ^ a b Kopeć, K.; Soszyńska-Maj, A.; Gehler, A.; Ansorge, J.; Krzemiński, W. (2018). "Mecoptera and Diptera from the early Toarcian (Early Jurassic) deposits of Wolfsburg–Große Kley (Lower Saxony, Germany)". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 107 (3): 163–171. doi:10.1017/S1755691017000226. S2CID 134568600. Retrieved 2 March 2022.
- ^ Lukashevich, E.; Ansorge, J.; Krzemiński, W.; Krzemińska, E. (1998). "Revision of Eoptychopterinae (Diptera: Eoptychopteridae)". Polskie Pismo Entomologiczne. 67 (1): 311–343. Retrieved 23 October 2021.
- ^ Kuhn, O. (1951). "Ein vermutlicher Schmetterling, Geisfeldiella benkerti n.g.n.sp. aus dem Lias Nordfrankens". Neues Jahrbuch Geologie Paläontologie. 951 (1): 58–61.
- ^ Ansorge, J. (2001). "Lower Jurassic Hennigmatidae (Diptera) from Germany". Studia dipterologica. 8 (1): 97–102. Retrieved 23 October 2021.
- ^ Ansorge, J. (1994). "Tanyderidae and Psychodidae (Insecta: Diptera) from the Lower Jurassic of northeastern Germany". Paläontologische Zeitschrift. 68 (1): 199–210. Bibcode:1994PalZ...68..199A. doi:10.1007/BF02989440. S2CID 128958459. Retrieved 23 October 2021.
- ^ Khramov, A. V.; Bashkuev, A. S.; Lukashevich, E. D. (2020). "The Fossil Record of Long-Proboscid Nectarivorous Insects". Entomological Review. 100 (7): 881–968. Bibcode:2020EntRv.100..881K. doi:10.1134/S0013873820070015. S2CID 234675037. Retrieved 2 March 2022.
- ^ a b c d e f g h i j k l m Thuy, B.; Numberger-Thuy, L. D. (2021). "Brittlestar diversity at the dawn in the Jenkyns Event (early Toarcian Oceanic Anoxic Event): new microfossils from the Dudelange drill core, Luxembourg". Geological Society, London, Special Publications. 514 (1): 34–58. Bibcode:2021GSLSP.514...83T. doi:10.1144/SP514-2021-3. S2CID 234842742. Retrieved 20 February 2022.
- ^ Kutscher, M. (1992). "Ophiomusium geisingense n.sp. eine neue Ophiurenart aus dem Lias Epsilon (Unteres Toarcium) von Bachhausen/Bayern". Archaeopteryx. 10 (1): 25–30. Retrieved 20 February 2022.
- ^ a b c d e Simms, M. J. (1988). "An intact comatulid crinoid from the Toarcian in Southern Germany" (PDF). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 140 (1): 1–7. Retrieved 20 February 2022.
- ^ Hess, H. (1991). "Neue Schlangensterne aus dem Toarcium und Aalenium des Schwäbischen Jura (Baden-Württemberg)". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 180 (2): 1–11. OCLC 28384653. Retrieved 20 February 2022.
- ^ Gall, J. C. (1983). Ancient Sedimentary Environments and the Habitats in Living Organisms: The Holzmaden Bituminous Shale Sea. Berlin: Springer. pp. 158–166. doi:10.1007/978-3-642-68909-3. ISBN 978-3-642-68911-6. Retrieved 20 February 2022.
- ^ Hauff, R. B. (1984). "Pentacrinites quenstedti (Oppel) aus dem oberen Untertoarcium (Lias Epsilon) von Ohmden bei Holzmaden (SW-Deutschland)". Paläontologische Zeitschrift. 58 (1): 255–263. doi:10.1007/BF02986064. S2CID 128699904. Retrieved 20 February 2022.
- ^ Jäger, M. (1995). "Echinodermata aus dem Ober-Toarcium und Aalenium Deutschlands I. Crinoidea: Cyrtocrinina und Millericrinina" (PDF). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 226 (1): 1–51. Retrieved 20 February 2022.
- ^ Seilacher, A.; Drozdzewski, G.; Haude, R. (1968). "Form and function in the stem in a pseudoplanktonic crinoid (Seirocrinus)" (PDF). Palaeontology. 11 (2): 275–282. Retrieved 20 February 2022.
- ^ Simms (1989). "Contrasting lifestyles in lower Jurassic crinoids: A comparison in benthic and pseudopelagic Isocrinida". Palaeontology. 29 (2): 475–493. Retrieved 20 February 2022.
- ^ Haude, R.; Jangoux, M. (1980). "Constructional morphology in the stems in Pentacrinitidae, and mode in life in Seirocrinus". Proceedings in the European Colloquium in Echinoderms, Brussels. AA Balkema. 1 (2): 17–23. doi:10.1201/9781003078913-3. S2CID 225515238. Retrieved 20 February 2022.
- ^ Fraas, E. (1910). "Chimäridenreste aus dem oberen Lias von Holzmaden" (PDF). Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg. 66 (2): 55–63. Retrieved 19 February 2022.
- ^ Duffin, C. J. (1995). "Holocephalans in the Staatliches Museum für Naturkunde in Stuttgart 3. First chimaeroid from the Lias of Baden-Württemberg (Early Toarcian of Ohmden)" (PDF). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 231 (4): 1–12. Retrieved 19 February 2022.
- ^ Quenstedt, F. A. (1882). "Bdellodus bollensis aus dem Posidonienschiefer von Boll". Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg. 38 (2): 132–142.
- ^ a b Maisch, M. W.; Matzke, A. T. (2016). "A new hybodontid shark (Chondrichthyes, Hybodontiformes) from the Lower Jurassic Posidonienschiefer Formation of Dotternhausen, SW Germany". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 280 (1): 241–257. Bibcode:2016NJGPA.280..241M. doi:10.1127/njgpa/2016/0577. Retrieved 19 February 2022.
- ^ Fraas, E. (1895). "Ein Fund von Skeletresten von Hybodus (Hybodus hauffianus)". Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins. 28 (3): 24–26.
- ^ Fraas, E. (1896). "Neue Selachier-Reste aus dem oberen Lias von Holzmaden in Württemberg". Jahreshefte des Vereins für vaterländische Naturkunde in Württemberg. 52 (1): 1–25. Retrieved 19 February 2022.
- ^ Duffin, C. J. (1997). "The dentition of Hybodus hauffianus Faas, 1895 (Toarcian, Early Jurassic)". Stuttgarter Beiträge zur Naturkunde. 256 (2): 1–20.
- ^ Duffin, C. J. (1983). "Holocephalans in the Staatliches Museum für Naturkunde in Stuttgart. 1. Myriacanthoids and squalorajoids" (PDF). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 97 (2): 1–41. Retrieved 19 February 2022.
- ^ Reif, W. E. (1974). "Metopacanthus sp.(Holocephali) und Palaeospinax egertoni S. Woodward (Selachii) aus dem unteren Toarcium von Holzmaden. Staatl. Museum für Naturkunde" (PDF). Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 10: 1–9. Retrieved 19 February 2022.
- ^ Maisey (1977). "The fossil selachian fishes Palaeospinax Egerton, 1872 and Nemacanthus Agassiz, 1837". Zoological Journal of the Linnean Society. 60 (3): 259–273. doi:10.1111/j.1096-3642.1977.tb01029.x. Retrieved 19 February 2022.
- ^ Klug, S.; Kriwet, J. (2008). "A new basal galeomorph shark (Synechodontiformes, Neoselachii) from the Early Jurassic of Europe". Naturwissenschaften. 95 (5): 443–448. Bibcode:2008NW.....95..443K. doi:10.1007/s00114-007-0341-0. PMID 18196213. S2CID 8460659. Retrieved 19 February 2022.
- ^ Thies, D. (1992). "A new species of Palaeospinax (Chondrichthyes, Neoselachii) from the Lower Jurassic Posidonia Shale of southern Germany". Paläontologische Zeitschrift. 66 (1): 137–146. Bibcode:1992PalZ...66..137T. doi:10.1007/BF02989484. S2CID 128557361. Retrieved 19 February 2022.
- ^ Maisey, J. G.; Ehret, D. J.; Denton, J. S. (2020). "A new genus of Late Cretaceous angel shark (Elasmobranchii; Squatinidae), with comments on squatinid phylogeny". American Museum Novitates (2020): 1–29. doi:10.1206/3954.1. hdl:2246/7230. S2CID 219700378. Retrieved 19 February 2022.
- ^ Duffin, C. J.; Joiko, L. (2020). "A fin spine of Recurvacanthus (Myriacanthidae, Holocephali) from the Posidonienschiefer (Early Jurassic) of SW Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 296 (3): 317–326. Bibcode:2020NJGPA.296..317J. doi:10.1127/njgpa/2020/0908. S2CID 225844997. Retrieved 19 February 2022.
- ^ a b White, E. I. (1925). "LXIX.—Additions to the upper Liassic fish-fauna of Holzmaden". Annals and Magazine of Natural History. 15 (9): 601–611. doi:10.1080/00222932508633256. Retrieved 19 February 2022.
- ^ Woodward, A. S. (1893). "On the cranial osteology of the Mesozoic ganoid fishes, Lepidotus and Dapedius". Proceedings of the Zoological Society of London. 38 (3): 559–565.
- ^ a b Thies, D.; Waschkewitz, J. (2016). "Redescription of Dapedium pholidotum (Agassiz, 1832)(Actinopterygii, Neopterygii) from the Lower Jurassic Posidonia Shale, with comments on the phylogenetic position of Dapedium Leach, 1822". Journal of Systematic Palaeontology. 14 (4): 339–364. Bibcode:2016JSPal..14..339T. doi:10.1080/14772019.2015.1043361. S2CID 130282395. Retrieved 19 February 2022.
- ^ a b Thies, D.; Hauff, R. B. (2011). "A new species of Dapedium Leach, 1822 (Actinopterygii, Neopterygii, Semionotiformes) from the Early Jurassic of South Germany" (PDF). Palaeodiversity. 4 (3): 185–221. Retrieved 19 February 2022.
- ^ Bürgin, T. (2000). "Euthynotus cf. incognitus (Actinopterygii, Pachycormidae) als Mageninhalt eines Fischsauriers aus dem Posidonienschiefer Süddeutchlands (Unterer Jura, Lias epsilon)". Eclogae Geologicae Helvetiae. 93 (1): 491–496.
- ^ Cooper, Samuel L. A.; Giles, Sam; Young, Holly; Maxwell, Erin E. (December 2022). "A New Large †Pachycormiform (Teleosteomorpha: †Pachycormiformes) from the Lower Jurassic of Germany, with Affinities to the Suspension-Feeding Clade, and Comments on the Gastrointestinal Anatomy of Pachycormid Fishes". Diversity. 14 (12): 1026. Bibcode:2022Diver..14.1026C. doi:10.3390/d14121026. ISSN 1424-2818.
- ^ Delsate, D. (1999). "Haasichthys michelsi, nov. gen., nov. sp., un nouveau Pachycormiforme (Osteichthyes, Actinopterygii) du Toarcian inférieur (Jurassique) luxembourgeois". Trav. Sci. Mus. Nat. Hist. Nat. Lux. 32: 87–140.
- ^ a b c d Ebert, M.; Thies, D.; Hauff, R. B. (2020). "First evidence of ganoin-scaled Halecomorphi (Neopterygii) in the Lower Jurassic of Holzmaden and Ohmden, Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 295 (3): 307–326. Bibcode:2020NJGPA.295..307E. doi:10.1127/njgpa/2020/0889. S2CID 216427872. Retrieved 19 February 2022.
- ^ a b c d e Jäger, Manfred (2005). Das Fossilienmuseum im Werkforum. Dotternhausen: Führer durch die Ausstellung von Jura-Fosslilien. Retrieved 3 March 2022.
- ^ a b c d e f Henrotay, M.; Marques, D.; Paicheler, J.C.; Gall, J.C.; Nel, A. (1998). "Le Toarcien inférieur des régions de Bascharage et de Bettembourg (grand-duché du Luxembourg): évidences paléontologiques et sédimentologiques d'environnements restreints proches de l'émersion" (PDF). Geodiversitas. 20 (2): 263–284. Retrieved 3 March 2022.
- ^ a b c d e f g Wunnenberg, C. (1950). "Zur Ausbildung des Posidonienschiefers in der Umgebung von Braunschweig mit besonderer Berucksichtigung der Fossilisation: Neües Jahrbuch für Geologie und Palaontologie Monatshefte". Paläontologische Zeitschrift. 46 (1): 161–182.
- ^ a b c Woodward, A. S. (1895). Catalogue of the fossil fishes in the British Museum (Natural History). London: British Museum. p. 112. Retrieved 19 February 2022.
- ^ a b c Arratia, G.; Thies, D. (2001). "A new teleost (Osteichthyes, Actinopterygii) from the Early Jurassic Posidonia shale of northern Germany". Fossil Record. 4 (1): 167–187. Bibcode:2001FossR...4..167A. doi:10.5194/fr-4-167-2001. Retrieved 19 February 2022.
- ^ a b Arratia (2003). "Leptolepis, Paraleptolepis (Teleostei) and a new fish name". Mitteilungen aus dem Museum für Naturkunde in Berlin. 6 (1): 157–159. Bibcode:2003FossR...6..157A. doi:10.5194/fr-6-157-2003. Retrieved 19 February 2022.
- ^ a b Hauff, B. (1953). "Ohmdenia multidentata nov. gen. et nov. sp. Ein neuer grober Fischfund aus den Posidonienschiefern des Lias e von Ohmden/Holzmaden in Württemburg". Neues Jahrb. Geol. P.-A. 97 (1): 39–50.
- ^ Wretman, L.; Blom, H.; Kear, B. P. (2016). "Resolution of the Early Jurassic actinopterygian fish Pachycormus and a dispersal hypothesis for Pachycormiformes". Journal of Vertebrate Paleontology. 36 (5): 16–34. Bibcode:2016JVPal..36E6022W. doi:10.1080/02724634.2016.1206022. S2CID 89338085. Retrieved 19 February 2022.
- ^ Hennig, E. (1918). "Uber Ptycholepis bollensis". Jahreshefte Verein vaterländischer Naturkunde. 74 (1): 173.
- ^ Wenz, S. (1959). "Étude de Ptycholepis bollensis, poisson du Lias supérieur de l'Yonne et du Wurtemberg". Bulletin de la Société Géologique de France. 7 (9): 916–928. doi:10.2113/gssgfbull.S7-I.9.916. Retrieved 19 February 2022.
- ^ Agassiz, L. (1843). Recherches sur les poissons fossiles.. (Vol. 2). Paris: Petitpierre.
- ^ Maxwell, E. E.; Stumpf, S. (2017). "Revision of Saurorhynchus (Actinopterygii: Saurichthyidae) from the Early Jurassic of England and Germany". European Journal of Taxonomy (321): 1–29. doi:10.5852/ejt.2017.321. Retrieved 24 October 2021.
- ^ Woodward, A. S. (1916). "I.—On a New specimen of the Liassic Pachycormid Fish Saurostomus esocinus, Agassiz". Geological Magazine. 3 (2): 49–51. Bibcode:1916GeoM....3...49W. doi:10.1017/S0016756800191113. S2CID 128701357. Retrieved 19 February 2022.
- ^ a b Hennig, E. (1925). "Chondrosteus Hindenburgi Pomp.---Ein "Stör" des württembergischen Ölschiefers (Lias epsilon)". Palaeontographica. 89 (2): 115–134.
- ^ Thies, D. (1989). "Der Hirnschädel und das Gehirn von Tetragonolepis semicincta Bronn 1830 (Actinopterygii, Semionotiformes)". Palaeontographica Abteilung A. 45 (2): 1–32.
- ^ a b c d Hennig, E. (1951). "Trachymetopon liassicum, Ald., ein Reisen-Crossopterygier aus Schwäbischem Ober-Lias". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 94 (1): 67–79.
- ^ a b c d e Dutel, Hugo; Herbin, Marc; Clément, Gaël (2015). "First occurrence of a mawsoniid coelacanth in the Early Jurassic of Europe". Journal of Vertebrate Paleontology. 35 (3): e929581. Bibcode:2015JVPal..35E9581D. doi:10.1080/02724634.2014.929581. S2CID 140557693. Retrieved 10 February 2022.
- ^ McGowan, C. (1990). "Computed tomography confirms that Eurhinosaurus (Reptilia: Ichthyosauria) does have a tailbend". Canadian Journal of Earth Sciences. 27 (11): 1541–1545. Bibcode:1990CaJES..27.1541M. doi:10.1139/e90-164. Retrieved 10 February 2022.
- ^ Maisch, M. W. (2022). "Ein neuer Eurhinosaurus (Reptilia: Ichthyosauria) aus der Posidonienschiefer-Formation (Unteres Toarcium) von Südwest-Deutschland mit Bemerkungen zur Nomenklatur und Taxonomie der Gattung". Jahreshefte der Gesellschaft für Naturkunde in Württemberg. 178: 117–148. Retrieved 2 May 2023.
- ^ a b Maisch, Michael W. (2008). "Revision der Gattung Stenopterygius Jaekel, 1904 emend. von Huene, 1922 (Reptilia: Ichthyosauria) aus dem unteren Jura Westeuropas". Palaeodiversity. 1 (1): 227–271. Retrieved 10 February 2022.
- ^ a b Maxwell, Erin E.; Cortés, Dirley (2020). "A revision of the Early Jurassic ichthyosaur Hauffiopteryx (Reptilia: Ichthyosauria), and description of a new species from southwestern Germany". Palaeontologia Electronica. 23 (2): 1–43. JSTOR 937. Retrieved 10 February 2022.
- ^ Büttcher, R. (1989). "Uber die Nahrung eines Leptopterygius (Ichthyosauria, Reptilia) aus dem süddeutschen Posidonienschiefer (Unterer Jura) mit Bemerkungen uber den Magen der Ichthyosaurier". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 155 (1): 1–19. Retrieved 10 February 2022.
- ^ W. Maisch, Michael; T. Matzke, Andreas (2022). "Magnipterygius huenei n. gen. n. sp., a new small stenopterygiid (Reptilia: Ichthyosauria) from the Posidonienschiefer Formation of SW Germany". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 303 (2): 169–201. Bibcode:2022NJGPA.303..169M. doi:10.1127/njgpa/2022/1042. S2CID 246797718. Retrieved 10 February 2022.
- ^ Maxwell, E. E. (2012). "New Metrics To Differentiate Species of Stenopterygius (Reptilia: Ichthyosauria) from the Lower Jurassic of Southwestern Germany". Journal of Paleontology. 86 (1): 105–115. doi:10.1666/11-038.1. JSTOR 41409134. S2CID 130298530.
- ^ Lindgren, J; Sjövall, P; Thiel, V; Zheng, W; Ito, S; Wakamatsu, K; Hauff, R; Kear, BP; Engdahl, A; Alwmark, C; Eriksson, ME; Jarenmark, M; Sachs, S; Ahlberg, PE; Marone, F; Kuriyama, T; Gustafsson, O; Malmberg, P; Thomen, A; Rodriguez-Meizoso, I; Uvdal, P; Ojika, M; Schweitzer, MH (2018). "Soft-tissue evidence for homeothermy and crypsis in a Jurassic ichthyosaur". Nature. 564 (1): 359–365. Bibcode:2018Natur.564..359L. doi:10.1038/s41586-018-0775-x. PMID 30518862. S2CID 54458324. Retrieved 10 February 2022.
- ^ Dick, D. G.; Schweigert, G.; Maxwell, E. E. (2016). "Trophic niche ontogeny and palaeoecology of early Toarcian Stenopterygius(Reptilia: Ichthyosauria)". Palaeontology. 59 (3): 423–431. Bibcode:2016Palgy..59..423D. doi:10.1111/pala.12232. S2CID 87906152. Retrieved 10 February 2022.
- ^ Maisch, M. W. (1998). "A new ichthyosaur genus from the Posidonia Shale (Lower Toarcian, Jurassic) of Holzmaden, SW-Germany with comments on the phylogeny of post-Triassic ichthyosaurs". Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen. 209 (2): 47–48. Bibcode:1998NJGPA.209...47M. doi:10.1127/njgpa/209/1998/47. Retrieved 10 February 2022.
- ^ Maxwell, E.E. (2018). "Redescription of the "lost" holotype of Suevoleviathan integer (Bronn, 1844) (Reptilia: Ichthyosauria)". Journal of Vertebrate Paleontology. 38 (2): 23–36. Bibcode:2018JVPal..38E9833M. doi:10.1080/02724634.2018.1439833. S2CID 91013635. Retrieved 10 February 2022.
- ^ Theodori, C. V. (1843). "Über einen kolossalen Ichthyosaurus trigonodon". Gelehrte Anzeigen der Königlich Bayerischen Akademie der Wissenschaften. 16 (2): 906–911.
- ^ Laboury, Antoine; Bennion, Rebecca F; Thuy, Ben; Weis, Robert; Fischer, Valentin (2022). "Anatomy and phylogenetic relationships of Temnodontosaurus zetlandicus (Reptilia: Ichthyosauria)". Zoological Journal of the Linnean Society. 118 (1): 26–38. doi:10.1093/zoolinnean/zlab118. Retrieved 2 March 2022.
- ^ a b c d Großmann (2006). "Taxonomy, Phylogeny and Palaeoecology of the Plesiosauroids (sauropterygia, Reptilia) from the Posidonia Shale (Toarcian, Lower Jurassic) of Holzmaden, South West Germany: Dissertation Zur Erlangung Des Grades Eines Doktors Der Naturwissenschaften". Geowissenschaftlichen Fakultät der Eberhard-Karls-Universität. 1 (1): 1–135. Retrieved 10 February 2022.
- ^ a b Vincent, P. (2011). "A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany". Journal of Vertebrate Paleontology. 31 (1): 340–351. Bibcode:2011JVPal..31..340V. doi:10.1080/02724634.2011.550352. S2CID 84743241. Retrieved 10 February 2022.
- ^ Maisch, M. W.; RŘcklin, M. (2000). "Cranial osteology of the sauropterygian Plesiosaurus brachypterygius from the Lower Toarcian of Germany". Palaeontology. 43 (1): 29–40. Bibcode:2000Palgy..43...29M. doi:10.1111/1475-4983.00117. S2CID 84916676. Retrieved 10 February 2022.
- ^ a b c Vincent, P.; Allemand, R.; Taylor, P. D.; Suan, G.; Maxwell, E. E. (2017). "New insights on the systematics, palaeoecology and palaeobiology of a plesiosaurian with soft tissue preservation from the Toarcian of Holzmaden, Germany". The Science of Nature. 104 (6): 51. Bibcode:2017SciNa.104...51V. doi:10.1007/s00114-017-1472-6. hdl:10141/622228. PMID 28578532. S2CID 24957821. Retrieved 10 February 2022.
- ^ Adam S. Smith; Peggy Vincent (2010). "A new genus of pliosaur (Reptilia: Sauropterygia) from the Lower Jurassic of Holzmaden, Germany". Palaeontology. 53 (5): 1049–1063. Bibcode:2010Palgy..53.1049S. doi:10.1111/j.1475-4983.2010.00975.x.
- ^ Huene, F. v. (1923). "Ein neuer Plesiosaurier aus dem oberen Lias Württembergs" (PDF). Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg. 79 (1): 3–23. Retrieved 10 February 2022.
- ^ Vincent, P.; Weis, R.; Kronz, G.; Delsate, D. (2019). "Microcleidus melusinae, a new plesiosaurian (Reptilia, Plesiosauria) from the Toarcian of Luxembourg". Geological Magazine. 156 (1): 99–116. Bibcode:2019GeoM..156...99V. doi:10.1017/S0016756817000814. S2CID 135111068. Retrieved 10 February 2022.
- ^ a b Marx, Miguel; Sjövall, Peter; Kear, Benjamin P.; Jarenmark, Martin; Eriksson, Mats E.; Sachs, Sven; Nilkens, Klaus; Op De Beeck, Michiel; Lindgren, Johan (2025). "Skin, scales, and cells in a Jurassic plesiosaur". Current Biology. 35 (5): 1113–1120.e3. Bibcode:2025CBio...35.1113M. doi:10.1016/j.cub.2025.01.001. PMID 39919740.
- ^ O'keefe, F. R. (2004). "Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: Sauropterygia) from the Toarcian of Holzmaden, Germany" (PDF). Journal of Paleontology. 78 (5): 973–988. Bibcode:2004JPal...78..973O. doi:10.1666/0022-3360(2004)078<0973:PDAPPO>2.0.CO;2. JSTOR 4094922. S2CID 53590349.
- ^ Marx, Miguel; Sachs, Sven; Kear, Benjamin P.; Eriksson, Mats E.; Nilkens, Klaus; Lindgren, Johan (31 March 2025). "A new specimen of Plesiopterys wildi reveals the diversification of cryptoclidian precursors and possible endemism within European Early Jurassic plesiosaur assemblages". PeerJ. 13: e18960. doi:10.7717/peerj.18960. ISSN 2167-8359. PMC 11967415.
- ^ Sachs, Sven; Abel, Pascal; Madzia, Daniel (2023). "Unusual plesiosaur vertebrae from the Lower Jurassic Posidonia Shale of Germany". Historical Biology. 36 (10): 2124–2132. doi:10.1080/08912963.2023.2242376. Retrieved 17 August 2023.
- ^ Sachs, Sven; Madzia, Daniel; Marx, Miguel; Roberts, Aubrey J.; Hampe, Oliver; Kear, Benjamin P. (2025). "The osteology, taxonomy, and phylogenetic placement of Seeleyosaurus guilelmiimperatoris (Plesiosauroidea, Microcleididae) from the Lower Jurassic Posidonia Shale of Germany". The Anatomical Record. n/a (n/a). doi:10.1002/ar.25620. ISSN 1932-8494. PMID 39981975.
- ^ a b Carroll, R. L. (1985). "A pleurosaur from the Lower Jurassic and the taxonomic position of the Sphenodontida". Palaeontographica Abteilung A. 189 (1): 1–28. Retrieved 10 February 2022.
- ^ Klein, N.; Scheyer, T.M. (2017). "Microanatomy and life history in Palaeopleurosaurus (Rhynchocephalia: Pleurosauridae) from the Early Jurassic of Germany". The Science of Nature. 104 (4): 4. Bibcode:2017SciNa.104....4K. doi:10.1007/s00114-016-1427-3. PMID 28005148. S2CID 27133670. Retrieved 10 February 2022.
- ^ a b c d Kuhn (1961). "Eine Schildkröte aus dem Lias epsilon Von Süddeutschland". Jh. Ver. Vaterländ. Naturk. Württemb. 116 (1): 285–287.
- ^ Münster, G.G. (1834). "Mittheilung, an Professor Bronn gerichtet". Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefaktenkunde. 16 (1): 42–43.
- ^ a b Theodori, L. (1831). "Über die Knochen vom Genus Pterodactylus aus der Lias-Formation in der Gegend von Banz". Isis von Oken. 21 (1): 276–281.
- ^ Joger, U.; Kosma, R.; Zellmer, H.; Röhling, H. G. (2018). "Saurier im Braunschweiger Land. Die Fund-und Grabungsstellen von Hondelage und Schandelah (Unterjura, Posidonienschiefer) sowie des Langenberg bei Goslar/Oker (Oberjura, Malm)(Exkursion N am 7. April 2018)". Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins. 4 (1): 447–479. doi:10.1127/jmogv/100/0013. Retrieved 10 February 2022.
- ^ Joyce, W. G. (2017). "A review of the fossil record of basal Mesozoic turtles". Bulletin of the Peabody Museum of Natural History. 58 (1): 65–113. Bibcode:2017BPMNH..58...65J. doi:10.3374/014.058.0105. S2CID 54982901. Retrieved 10 February 2022.
- ^ Michela, M Johnson; Young, Mark T; Brusatte, Stephen L (2020). "Emptying the wastebasket: a historical and taxonomic revision of the Jurassic crocodylomorph Steneosaurus" (PDF). Zoological Journal of the Linnean Society. 189 (428–448). Retrieved 20 February 2022.[dead link ]
- ^ Johnson, Michela M.; Sachs, Sven; Young, Mark T.; Abel, Pascal (5 February 2025). "A re-description of the teleosauroid Macrospondylus bollensis (Jaeger, 1828) from the Posidonienschiefer Formation of Germany". PalZ. Bibcode:2025PalZ..tmp....2J. doi:10.1007/s12542-024-00712-x. ISSN 0031-0220.
{{cite journal}}
: CS1 maint: bibcode (link) - ^ a b c d e Johnson, Michela M.; Young, Mark T.; Brusatte, Stephen L. (2020). "The phylogenetics of Teleosauroidea (Crocodylomorpha, Thalattosuchia) and implications for their ecology and evolution". PeerJ. 8: e9808. doi:10.7717/peerj.9808. PMC 7548081. PMID 33083104.
- ^ Heller, F. (1953). "Ein Mystriosaurus-Fund im Lias epsilon von Mistelgau". Geologische Blätter für Nordost-Bayern und angrenzende Gebiete. 6 (2): 146–148.
- ^ a b c Sachs, S; Johnson, M.M.; Young, M.T.; Abel, P. (2019). "The mystery of Mystriosaurus: Redescribing the poorly known Early Jurassic teleosauroid thalattosuchians Mystriosaurus laurillardi and Steneosaurus brevior". Acta Palaeontologica Polonica. 64 (3): 565–579. doi:10.4202/app.00557.2018. hdl:20.500.11820/fa362d74-7f12-4513-b1f9-cc4eadbb0d67. S2CID 202892925. Retrieved 10 February 2022.
- ^ a b Pierce, S. E.; Williams, M.; Benson, R. B. (2017). "Virtual reconstruction of the endocranial anatomy of the early Jurassic marine crocodylomorph Pelagosaurus typus (Thalattosuchia)". PeerJ. 3225 (1): 1–32. Retrieved 10 February 2022.
- ^ Wellnhofer, Peter (1974). Campylognathoides Liasicus (Quenstedt), an Upper Liassic Pterosaur from Holzmaden. USA: Carnegie Museum of Natural History.
- ^ Plieninger, F. (1894). "Campylognathus Zittelli. Ein neuer Flugsaurier aus dem Oberen Lias Schwabens". Palaeontographica. 41 (1): 193–222.
- ^ a b c Padian, K. (2008). "The Early Jurassic pterosaur Dorygnathus banthensis (Theodori, 1830)". Special Papers in Palaeontology. 92: 69–07. Retrieved 10 February 2022.
- ^ Hübner, M.; Gischler, E.; Kosma, R. (2020). "Rare pterosaur remains tentatively referred to Dorygnathus banthensis (Theodori, 1830) from the Lower Jurassic (Posidonia Shale) of Schandelah (Lower Saxony, Germany)" (PDF). Braunschweiger Naturkundliche Schriften. 16 (1): 59–82. Retrieved 10 February 2022.
- ^ Wild, R. (1971). "Dorygnathus mistelgauensis n. sp., ein neuer Flugsaurier aus dem Lias Epsilon von Mistelgau (Fränkischer Jura)". Geologische Blätter für Nordost-Bayern und angrenzende Gebiete. 21 (4): 178–195.
- ^ Broili, F. (1939). "Ein Dorygnathus mit Hautresten" (PDF). Sitzungsberichte - Bayerische Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse (4): 129–132. Retrieved 10 February 2022.
- ^ a b O'Sullivan, M.; Martill, D.M. (2017). "The taxonomy and systematics of Parapsicephalus purdoni (Reptilia: Pterosauria) from the Lower Jurassic Whitby Mudstone Formation, Whitby, U.K". Historical Biology. 29 (8): 1009–1018. Bibcode:2017HBio...29.1009O. doi:10.1080/08912963.2017.1281919. S2CID 132532024. Retrieved 10 February 2022.
- ^ a b Wild, R. (1978). "Ein Sauropoden-Rest (Reptilia, Saurischia) aus dem Posidonienschiefer (Lias, Toarcium) von Holzmaden". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 41 (2): 1–15.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa Wilde, V. (2001). "Die Landpflanzen-Taphozönose aus dem Posidonienschiefer des Unteren Jura (Schwarzer Jura [Epsilon], Unter-Toarcium) in Deutschland und ihre Deutung". Staatliches Museum für Naturkunde. 304 (2): 1–12. Retrieved 3 March 2022.
- ^ a b c d e f Vogellehner, D. (1982). "Zur Anatomie und Systematik von "Treibhölzern" aus dem Posidonienschiefer von Holzmaden (Schwäb. Alb)". Cour. Forsch.-Inst. Senckenberg. 56 (1): 15–22.
- ^ a b Seilacher, A. (1990). "Die Holzmadener Posidonienschiefer. Entstehung der Fossillagerstätte und eines Erdölmuttergesteines". Klassische Fundstellen der Paläontologie. 2 (1): 107–131. Retrieved 3 March 2022.
- ^ Ammon, V.L. (1875). Die Jura Ablagerungen zwischen Regensburg und Passau. München: Theodor Ackermann. Retrieved 3 March 2022.
- ^ a b c d e Heunisch, C. (2014). "Das schwarze Jurameer und seine unsichtbaren Bewohner". Jurameer. 2 (1): 7–10. Retrieved 3 March 2022.
- ^ a b c d e f g h i j k l m n o p q r s t Galasso, F.; Feist-Burkhardt, S.; Schneebeli-Hermann, E. (2022). "The palynology of the Toarcian Oceanic Anoxic Event at Dormettingen, southwest Germany, with emphasis on changes in vegetational dynamics". Review of Palaeobotany and Palynology. 304 (1): 104701. Bibcode:2022RPaPa.30404701G. doi:10.1016/j.revpalbo.2022.104701. Retrieved 3 October 2023.
- ^ a b c Houben, A. J.; Goldberg, T.; Slomp, C. P. (2021). "Biogeochemical evolution and organic carbon deposition on the Northwestern European Shelf during the Toarcian Ocean Anoxic Event". Palaeogeography, Palaeoclimatology, Palaeoecology. 565 (1): 897–912. Bibcode:2021PPP...56510191H. doi:10.1016/j.palaeo.2020.110191. hdl:1874/410767. S2CID 233805324. Retrieved 3 March 2022.
- ^ Hofmann, Christa-Ch.; Odgerel, Nyamsambuu; Seyfullah, Leyla J. (2021). "The occurrence of pollen of Sciadopityaceae Luerss. through time". Fossil Imprint. 77 (2): 271–281. doi:10.37520/fi.2021.019. S2CID 245555379. Retrieved 27 December 2021.
- ^ a b c d e Madler, K.A. (1956). "Pollen analytical studies on the Posidonian Shale[ Pollenanalytische untersuchungen im Posidonienschiefer ]". PalZ (Paläontologische Zeitschrift). 30 (1): 18. Retrieved 3 March 2022.
- ^ a b Suan, G.; Nikitenko, B.L.; Rogov, M.A.; Baudin, F.; Spangenberg, J.E.; Knyazev, V.G.; Glinskikh, L.A.; Goryacheva, A.A.; Adatte, T.; Riding, J.B.; Föllmi, K.B.; Pittet, B.; Mattioli, E.; Lécuyer, C. (2011). "Polar record of Early Jurassic massive carbon injection". Earth and Planetary Science Letters. 312 (1): 102–113. Bibcode:2011E&PSL.312..102S. doi:10.1016/j.epsl.2011.09.050. Retrieved 3 March 2022.
- ^ a b Thiergart, F. (1944). "The plant remains of the Posidonia Shale [Die Pflanzenreste des Posidonienschiefers]". Archiv für Lagerstättenforschung, zur Paläogeographie und Bitumen-Fährung des Posidonihiefers im Deutschen Lias. 77 (1): 45–48.
- ^ Wade-Murphy, J.; Kuerschner, W. M (2006). "A new technique to infer the botanical affinity of palynomorphs, and its application on Spheripollenites psilatus from the Toarcian of Bornholm, Denmark" (PDF). In 7 Th European Palaeobotany Palynology Conference (1–2): 153–154. Archived from the original (PDF) on 22 December 2021. Retrieved 13 October 2021.
- ^ a b c d e f Salfeld, H. (1907). "Fossile Land-Pflanzen der Rät- und Juraformation Südwestdeutschlands" (PDF). Palaeontographica. 54 (4): 163–204. Retrieved 3 March 2022.
- ^ Salfeld, H. (1909). "Beiträge zur Kenntnis jurassischer Pflanzenreste aus Norddeutschland". Palaeontographica. 56: 1–35. Retrieved 3 March 2022.
- ^ a b c d Maubeuge, P. (1947). "Sur l'existence du genre Neocalamites dans le Toarcien du Grand-Duché de Luxembourg". Archives de l'Institut Gratul-Ducal de Luxembourg, Section des Sciences naturelles, physiques et mathématiques. Nouvelle Série. 17 (2): 59–64. Retrieved 3 March 2022.
- ^ a b Böttcher, R. (1998). "Leben und Tod im Meer des Posidonienschiefers". PalZ (Paläontologische Zeitschrift). 25 (2): 83–96. Retrieved 3 March 2022.
- ^ a b c d e Kurr, J. G. (1845). "Beiträge zur fossilen Flora der Juraformation Württembergs". Schule zu Stuttgart den. 27 (6): 1–17. Retrieved 3 March 2022.
- ^ Küpper, K. (1968). "Die Gattung Otozamites". Taxon. 17 (5): 548–552. Bibcode:1968Taxon..17..548K. doi:10.2307/1216063. JSTOR 1216063.
- ^ a b Keller, T.; Wilde, V. (2000). "Ein Koniferenrest aus dem Posidonienschiefer des Unteren Jura (Schwarzer Jura [epsilon], Unter-Toarcium) von Süddeutschland". Stuttgarter Beiträge zur Naturkunde, Serie B (Geologie und Paläontologie). 282 (2): 1–17. Retrieved 3 March 2022.
- ^ Tollmann, A. (1976). "Analyse des klassischen nordalpinen Mesozoikums". Stratigraphie, Fauna und Fazies der Nördlichen Kalkalpen. 2 (1): 123–141. OCLC 3710249. Retrieved 3 March 2022.
- ^ Süss, H.; Philippe, M. (1993). "Holzanatomische Untersuchungen an einem fossilen Holz, Circoporoxylon grandiporosum Müller-Stoll et Schultze-Motel, aus dem Unteren Jura von Frankreich". Feddes Repertorium. 104 (8): 451–463. doi:10.1002/fedr.19931040706. Retrieved 3 March 2022.
- ^ a b Philippe, M.; Tchoumatchenco, P. (2008). "Palaeoecologically significant wood genus Xenoxylon discovered in the East Stara Planina Mts.(East Bulgaria) Balaban Formation (Toarcian, Early Jurassic)". Comptes rendus de l'Académie bulgare des Sciences. 61 (5): 633–638. Retrieved 3 March 2022.
- ^ Schultze-Motel, J. (1960). "Anatomische Untersuchungen an mesozoischen Gymnospermen-Hölzern". Dissertation Pädagogische Hochschule Potsdam. 156 (1): 1–25.
- ^ Mueller-Stoll, W. R. (1986). "Evolutionary trends in gymnospermous wood structures during Mesozoic-Protopinaceous woods in the German Jurassic" (PDF). Palaeobotanist. 35 (3): 233–235. Retrieved 3 March 2022.
- ^ Bamford, M. K.; Philippe, M.; Thévenard, F. (2016). "Long overdue extinction of the Protopinaceae" (PDF). Review of Palaeobotany and Palynology. 234 (1): 25–30. Bibcode:2016RPaPa.234...25B. doi:10.1016/j.revpalbo.2016.06.006. Retrieved 3 March 2022.
- ^ Müller-Stoll, W.R.; Schultze-Motel, J. (1990). "Gymnospermen-Hölzer des Deutschen Jura. Teil 3: Abietoid (modern) getüpfelte Hölzer". Zeitschrift der deutschen geologischen Gesellschaft. 141 (2): 61–77. doi:10.1127/zdgg/141/1990/61.
- ^ Philippe, M.; Thevenard, F. (1996). "Distribution and palaeoecology of the Mesozoic wood genus Xenoxylon: palaeoclimatological implications for the Jurassic of Western Europe". Review of Palaeobotany and Palynology. 91 (4): 353–370. Bibcode:1996RPaPa..91..353P. doi:10.1016/0034-6667(95)00067-4. Retrieved 3 March 2022.