Jump to content

Draft:Set exponentiation

From Wikipedia, the free encyclopedia

In set theory, the set exponentiation of to the , is the set of all functions from to , denoted .

Definition

[edit]

- Empty function

- Formal definition

Note that, often,

Natural-number powers (An)

[edit]

Set of functions from to .

Cardinality

[edit]

See Suppes and Kuratowski (p. 170):

Topology

[edit]

Applications

[edit]

- Curring

History

[edit]

https://hsm.stackexchange.com/questions/11586/

References

[edit]
  • McCarty, George (1988) [1967]. Topology: An Introduction with Application to Topological Groups. 9: Dover. ISBN 978-0486656335. LCCN 87-34583. Archived from the original on 2019-07-04.{{cite book}}: CS1 maint: location (link)
  • Stoll, Robert R. (1963). Set Theory and Logic. San Francisco: W. H. Freeman. ISBN 7167 0416-1. LCCN 63-8995. {{cite book}}: ISBN / Date incompatibility (help)
  • Suppes, Patrick (1972) [1960]. Axiomatic Set Theory. Dover Books on Mathematics. New York: Dover. ISBN 0-486-61630-4. LCCN 72-86226. Archived from the original on 2014-08-06.
  • Takeuti, Gaisi; Zaring, Wilson M (1982). Introduction to Axiomatic Set Theory. Graduate Texts in Mathematics (2nd ed.). New York: Springer-Verlag. doi:10.1007/978-1-4613-8168-6. ISBN 0-387-90683-5. ISSN 0072-5285. LCCN 81-8838. Archived from the original on 2014-08-06.
  • Kuratowski, Kazimierz (1968). Set Theory. Amsterdam: North Holland Publishing. LCCN 67-21972.