Draft:Set exponentiation
Appearance
In set theory, the set exponentiation of to the , is the set of all functions from to , denoted .
Definition
[edit]- Empty function
- Formal definition
Note that, often,
Natural-number powers (An)
[edit]Set of functions from to .
Cardinality
[edit]
See Suppes and Kuratowski (p. 170):
Topology
[edit]Applications
[edit]- Curring
History
[edit]https://hsm.stackexchange.com/questions/11586/
References
[edit]- McCarty, George (1988) [1967]. Topology: An Introduction with Application to Topological Groups. 9: Dover. ISBN 978-0486656335. LCCN 87-34583. Archived from the original on 2019-07-04.
{{cite book}}
: CS1 maint: location (link) - Stoll, Robert R. (1963). Set Theory and Logic. San Francisco: W. H. Freeman. ISBN 7167 0416-1. LCCN 63-8995.
{{cite book}}
: ISBN / Date incompatibility (help) - Suppes, Patrick (1972) [1960]. Axiomatic Set Theory. Dover Books on Mathematics. New York: Dover. ISBN 0-486-61630-4. LCCN 72-86226. Archived from the original on 2014-08-06.
- Takeuti, Gaisi; Zaring, Wilson M (1982). Introduction to Axiomatic Set Theory. Graduate Texts in Mathematics (2nd ed.). New York: Springer-Verlag. doi:10.1007/978-1-4613-8168-6. ISBN 0-387-90683-5. ISSN 0072-5285. LCCN 81-8838. Archived from the original on 2014-08-06.
- Kuratowski, Kazimierz (1968). Set Theory. Amsterdam: North Holland Publishing. LCCN 67-21972.