Diaphoretickes
Diaphoretickes Temporal range: [1]
| |
---|---|
![]() | |
Scientific classification ![]() | |
Domain: | Eukaryota |
Clade: | Diaphoretickes Adl et al., 2012[2] |
Clades | |
Possibly included: | |
Synonyms | |
Diaphoretickes is a major group of eukaryotic organisms spanning over 400,000 species. The majority of the earth's biomass that carries out photosynthesis belongs to Diaphoretickes.[7] In older classification systems, members of the Diaphoretickes were variously placed in the kingdoms Protozoa or Protista.
Etymology
[edit]The name Diaphoretickes derives from Greek διαφορετικές (diaforetikés) meaning diverse, dissimilar, referring to the wide morphological and cellular diversity among members of this clade.[2]
History
[edit]Eukaryotes, organisms whose cells contain a nucleus, have been traditionally grouped into four kingdoms: animals, plants, fungi and protists. In the late 20th century, molecular phylogenetic analyses revealed that protists are a paraphyletic assortment of many independent evolutionary lineages or clades, from which animals, fungi and plants evolved.[8][9] However, the relationships between these clades remained difficult to assess due to technological limitations.[10] Starting in the early 2000s, improvements on phylogenetics allowed the classification of most eukaryotes into a small number of diverse clades called supergroups.[11][12]
In 2008, a close evolutionary relationship was discovered between some of these clades: Archaeplastida (plants and relatives; sometimes called Plantae),[13] SAR (stramenopiles, alveolates and rhizarians), and two smaller groups of algae, haptophytes and cryptomonads. This collection of organisms contains almost all eukaryotes capable of photosynthesis.[14]
The SAR, haptophytes and cryptomonads were collectively known as chromalveolates[15][16] or kingdom Chromista due to a hypothesized common ancestor that obtained the ability to photosynthesize, as algae included in them usually contain a unique pigment, chlorophyll c.[9][13] The relationship between plants and chromalveolates had been described earlier by evolutionary biologist Thomas Cavalier-Smith (1942–2021), who referred to the clade containing both groups as photokaryotes since most of their members are photosynthetic.[17][5] He later called them corticates, suggesting that they share a common ancestor due to the presence of cortical alveoli (vesicles underneath the cell membrane) in some of their members (glaucophytes and alveolates).[18][19][20] However, these names became obsolete, largely due to the discovery that chromalveolates are not monophyletic: these algae evolved the ability to photosynthesize independently from one another.[14]
In 2012, a publication by the International Society of Protistologists (ISOP) established a taxonomic name for this clade, Diaphoretickes, with the following phylogenetic definition:[2]
"The most inclusive clade containing Bigelowiella natans Moestrup & Sengco 2001 (Rhizaria), Tetrahymena thermophila Nanney & McCoy 1976 (Alveolata), Thalassiosira pseudonana Cleve 1873 (Stramenopiles), and Arabidopsis thaliana (Linnaeus) Heynhold, 1842 (Archaeplastida), but not Homo sapiens Linnaeus 1758 (Opisthokonta), Dictyostelium discoideum Raper 1935 (Amoebozoa) or Euglena gracilis Klebs 1883 (Excavata). This is a branch-based definition in which all of the specifiers are extant."
In the following years, higher quality phylogenetic analyses recovered more protists that fall into this definition (e.g., telonemids, centrohelids, katablepharids), leading to new clades within Diaphoretickes, such as Haptista (centrohelids and haptophytes) and Cryptista (cryptomonads, katablepharids and relatives).[21]
In 2015, Cavalier-Smith and co-authors rejected the name Diaphoretickes proposed by the ISOP, arguing that it was "an entirely unnecessary, and less euphonious third synonym with no intuitive meaning [...] which is destabilising and should not be used". Instead, they suggested converting a pre-existing taxonomic name, Corticata,[a] for the clade containing Chromista and Archaeplastida (Plantae).[4] This did not reach consensus, and Diaphoretickes remains widely accepted by the scientific community as the name of this major eukaryotic clade.[22]
Description and diversity
[edit]Diaphoretickes is a large clade that includes eukaryotes of very diverse morphologies and cellular structures.[22] Its major groups are: Archaeplastida, organisms with chloroplasts derived from a primary endosymbiosis event (e.g., green algae, plants, red algae, glaucophytes), amounting to at least 450,000 species;[23] the SAR supergroup, which includes the stramenopiles (e.g., diatoms, brown algae, water moulds, more than 100,000 species in total),[24] the alveolates (e.g., ciliates, dinoflagellates, apicomplexans; at least 18,500 species)[b] and the rhizarians (e.g., radiolarians, forams; more than 7,000 combined species);[28][29] Haptista, composed of haptophyte algae (e.g., coccolithophores) and centrohelid heliozoans; and Cryptista, comprising cryptomonad algae and related protozoa.[22]
A few morphological traits are common to Diaphoretickes members. They are biflagellates or bikonts, meaning their cells typically have two flagella.[20] Their cells ancestrally have a ventral groove for feeding, as observed in early-branching species (e.g., the alveolate Colponema and the stramenopiles Kaonashia and Platysulcus).[30][31] These cellular traits are typical of excavates, a paraphyletic group composed of the most basal eukaryotes (i.e., Discoba, Metamonada and Malawimonada); they are likely the ancestral traits of all eukaryotes.[16][32] In addition, as opposed to excavates, many Diaphoretickes members have cortical alveoli (flattened vesicles beneath the cell surface), such as glaucophytes, alveolates, haptophytes, telonemids[33] and some early-branching stramenopiles (e.g., Kaonashia, bigyromonads).[31] Due to the wide occurrence of these alveoli, various researchers consider them an ancestral characteristic of Diaphoretickes.[13][33] Another frequent trait is the presence of flagellar hairs, also considered ancestral and unique to Diaphoretickes.[30]
Diaphoretickes includes all eukaryotes engaging in photosynthesis, except for the euglenophytes: these are the ochrophytes (among stramenopiles), myzozoans (in alveolates), chlorarachniophytes (in rhizarians), cryptomonads, haptophytes, and most archaeplastids (land plants, green algae, red algae and glaucophytes).[14][34] As such, they include most of the Earth's biomass, with land plants alone occupying over 81% of the total planet biomass.[35]
Diaphoretickes also includes all amoebae that have axopodia, stiff filaments branching from the cells. These were historically known as Actinopoda, and were divided into the marine radiolaria (rhizarians) and the mostly freshwater heliozoa ("sun animalcules").[36] The heliozoa are primarily the centrohelids (relatives of haptophytes), actinophryids (stramenopiles) and desmothoracids (rhizarians).[37] There are also some lone heliozoan species such as Microheliella maris, the sister group of Cryptista.[38] Even heliozoa that have not been genetically sequenced are presumed to belong to Diaphoretickes.[39]
Evolution
[edit]
| ||||||||||||||||||||||||||||||||||||
Overview of the eukaryotic tree of life with a focus on phylogenetic relationships within Diaphoretickes, based on 2024 and 2025 phylogenomic analyses. The basal topology varies greatly depending on the data used, and the root of the tree is unresolved, leading to a polytomy.[40][41][42] P+M+H refers to the clade formed by Provora, Meteora and Hemimastigophora, which may branch in Diaphoretickes[42] or may be a basal eukaryotic clade.[40] *Chromalveolate groups.[4] |
Evolutionary relationships are still uncertain between the different clades of Diaphoretickes. Haptista and Cryptista, initially hypothesized as relatives of each other (collectively known as the taxon Hacrobia), were later revealed to be more distantly related.[43] In particular, Cryptista and the species Microheliella maris form a clade known as Pancryptista, which in turn is the closest relative of Archaeplastida, together forming the proposed 'CAM' clade.[38][44] Telonemia, previously assigned to Hacrobia,[4] is sometimes resolved as the sister clade of the SAR supergroup, forming the hypothesized TSAR clade,[33] while other studies resolve it as more closely related to Haptista.[41]
Three small groups of protists—provorans, hemimastigotes, and the species Meteora sporadica—form a clade that may be either related to or inside of Diaphoretickes, depending on the analysis.[41][40][42] Before phylogenomic data from Meteora and provorans became available, there was already a known affinity between hemimastigotes and Diaphoretickes, although the exact position of hemimastigotes remained unclear.[45] Cavalier-Smith proposed that hemimastigotes were the closest relatives of Diaphoretickes (known by him as corticates), and established the name eucorta (eu-, 'well-developed' and cortex, 'bark') for their suggested clade, since both groups have a cortical pellicle: with cortical alveoli in corticates, and with microtubules and a proteinaceous thickening in hemimastigotes instead.[6] According to the phylogenetic definition of Diaphoretickes, any organism that is more closely related to them than to Discoba or Amorphea is considered part of them, which renders 'eucorta' a synonym of Diaphoretickes.[22]
There is also uncertainty regarding relationships with the remaining eukaryotic clades.[46] Between Diaphoretickes and Amorphea, the two major clades of eukaryotes,[22] there are many smaller clades—Discoba, Metamonada, Malawimonada, Ancyromonadida, CRuMs, and the aforementioned provoran-hemimastigote-Meteora clade—that may branch closer to one or the other, or closer to the root of the eukaryotic tree, depending on the analysis.[40][32] Only some analyses find a closer relationship between Diaphoretickes and the Discoba clade, together known as Diphoda.[41] According to a 2021 molecular clock analysis, Diaphoretickes diverged from other eukaryotes during the Paleoproterozoic (2.2 to 1.6 billion years ago), although the first putative fossils originated during the Mesoproterozoic.[1]
Notes
[edit]- ^ a b The taxonomic name Corticata has changed in composition several times. It was first coined by zoologist Edwin Ray Lankester in 1878 as one of the two categories of the Protozoa (the other being Gymnomyxa), which he interpreted as a subkingdom of animals.[3] In his system, Corticata included flagellated protists, many of which fall in Diaphoretickes (e.g., heterokonts, dinoflagellates, ciliates),[2][4] while Gymnomyxa (meaning 'naked slime') included amoebae. In 2002, evolutionary biologist Thomas Cavalier-Smith adopted these two names as subkingdoms of his own proposed kingdom Protozoa. He redefined Corticata to group Excavata and Rhizaria, due to similarities in their cytoskeleton.[5] This definition was polyphyletic and fell out of use. After the description of Diaphoretickes, Cavalier-Smith repurposed Corticata in 2015 as its synonym.[4]
- ^ There are more than 8,000 species of ciliates,[25] more than 6,000 species of apicomplexans,[26] and around 4,500 species of dinoflagellates.[27]
References
[edit]- ^ a b Strassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (25 March 2021). "A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids" (PDF). Nature Communications. 12 (1): 1879. Bibcode:2021NatCo..12.1879S. doi:10.1038/s41467-021-22044-z. ISSN 2041-1723. PMC 7994803. PMID 33767194. Retrieved 13 May 2025.
- ^ a b c d Adl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; Bowser, Samuel S.; Brown, Matthew W.; Burki, Fabien; Dunthorn, Micah; Hampl, Vladimir; Heiss, Aaron; Hoppenrath, Mona; Lara, Enrique; le Gall, Line; Lynn, Denis H.; McManus, Hilary; Mitchell, Edward A. D.; Mozley-Stanridge, Sharon E.; Parfrey, Laura W.; Pawlowski, Jan; Rueckert, Sonja; Shadwick, Laura; Schoch, Conrad L.; Smirnov, Alexey; Spiegel, Frederick W. (28 September 2012). "The Revised Classification of Eukaryotes". The Journal of Eukaryotic Microbiology. 59 (2): 429–514. doi:10.1111/j.1550-7408.2012.00644.x. PMC 3483872. PMID 23020233.
- ^ Lankester, E. Ray (September 1878). "Preface to the English translation". In Gegenbaur, Carl (ed.). Elements of Comparative Anatomy. London: MacMillan and co. p. xviii.
- ^ a b c d e Cavalier-Smith, Thomas; Chao, Ema E.; Lewis, Rhodri (2015). "Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista". Molecular Phylogenetics and Evolution. 93: 331–362. doi:10.1016/j.ympev.2015.07.004.
- ^ a b Cavalier-Smith, T (1 March 2002). "The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa". International Journal of Systematic and Evolutionary Microbiology. 52 (2): 297–354. doi:10.1099/00207713-52-2-297. ISSN 1466-5026.
- ^ a b Cavalier-Smith, Thomas (23 December 2021). "Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi". Protoplasma. 259: 487–593. doi:10.1007/s00709-021-01665-7.
- ^ Bar-On YM, Phillips R, Milo R (June 2018). "The biomass distribution on Earth". Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6506–6511. doi:10.1073/pnas.1711842115. PMC 6016768. PMID 29784790.
- ^ Scamardella JM (1999). "Not plants or animals: A brief history of the origin of Kingdoms Protozoa, Protista, and Protoctista". International Microbiology. 2 (4): 207–221. PMID 10943416.
- ^ a b Blackwell, Will H. (August 2009). "Chromista revisited: a dilema of overlapping putative kingdoms, and the attempted application of the botanical code of nomenclature" (PDF). Phytologia. 91 (2): 191–225. Retrieved 9 June 2025.
- ^ Keeling, Patrick J.; Burger, Gertraud; Durnford, Dion G.; Lang, B. Franz; Lee, Robert W.; Pearlman, Ronald E.; Roger, Andrew J.; Gray, Michael W. (2005). "The tree of eukaryotes". Trends in Ecology & Evolution. 20 (12): 670–676. doi:10.1016/j.tree.2005.09.005.
- ^ Burki, Fabien; Shalchian-Tabrizi, Kamran; Minge, Marianne; Skjæveland, Åsmund; Nikolaev, Sergey I.; Jakobsen, Kjetill S.; Pawlowski, Jan (29 August 2007). "Phylogenomics Reshuffles the Eukaryotic Supergroups". PLoS ONE. 2 (8): e790. doi:10.1371/journal.pone.0000790. ISSN 1932-6203. PMC 1949142. PMID 17726520.
- ^ Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G.B. (2020). "The New Tree of Eukaryotes". Trends in Ecology & Evolution. 35 (1): 43–55. doi:10.1016/j.tree.2019.08.008. Retrieved 2025-06-05.
- ^ a b c Cavalier-Smith, Thomas (23 June 2010). "Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree". Biology Letters. 6 (3): 342–345. doi:10.1098/rsbl.2009.0948. ISSN 1744-9561. PMC 2880060. PMID 20031978.
- ^ a b c Burki, Fabien; Shalchian-Tabrizi, Kamran; Pawlowski, Jan (23 August 2008). "Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes". Biology Letters. 4 (4): 366–369. doi:10.1098/rsbl.2008.0224. ISSN 1744-9561. PMC 2610160. PMID 18522922. Retrieved 7 June 2025.
- ^ Adl, Sina M.; Simpson, Alastair G. B.; Farmer, Mark A.; Andersen, Robert A.; Anderson, O. Roger; Barta, John R.; Bowser, Samuel S.; Brugerolle, Guy; Fensome, Robert A.; Fredericq, Suzanne; James, Timothy Y.; Karpov, Sergei; Kugrens, Paul; Krug, John; Lane, Christopher E.; Lewis, Louise A.; Lodge, Jean; Lynn, Denis H.; Mann, David G.; Mccourt, Richard M.; Mendoza, Leonel; Moestrup, Øjvind; Mozley-Standridge, Sharon E.; Nerad, Thomas A.; Shearer, Carol A.; Smirnov, Alexey V.; Spiegel, Frederick W.; Taylor, Max F. J. R. (19 October 2005). "The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists". The Journal of Eukaryotic Microbiology. 52 (2): 399–451. doi:10.1111/j.1550-7408.2005.00053.x. PMID 16248873.
- ^ a b Hampl, Vladimir; Hug, Laura; Leigh, Jessica W.; Dacks, Joel B.; Lang, B. Franz; Simpson, Alastair G. B.; Roger, Andrew J. (10 March 2009). "Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"". Proceedings of the National Academy of Sciences. 106 (10): 3859–3864. doi:10.1073/pnas.0807880106. ISSN 0027-8424. PMC 2656170. PMID 19237557. Retrieved 7 June 2025.
- ^ Cavalier-Smith, Tom (1999). "Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree". Journal of Eukaryotic Microbiology. 46 (4): 347–366. doi:10.1111/j.1550-7408.1999.tb04614.x.
- ^ Cavalier-Smith, Thomas (2003). "Protist phylogeny and the high-level classification of Protozoa". European Journal of Protistology. 39 (4): 338–348. doi:10.1078/0932-4739-00002.
- ^ Cavalier‐Smith, Thomas (24 March 2009). "Megaphylogeny, Cell Body Plans, Adaptive Zones: Causes and Timing of Eukaryote Basal Radiations". Journal of Eukaryotic Microbiology. 56 (1): 26–33. doi:10.1111/j.1550-7408.2008.00373.x. ISSN 1066-5234.
- ^ a b Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R (December 2014). "Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa". Molecular Phylogenetics and Evolution. 81: 71–85. doi:10.1016/j.ympev.2014.08.012. PMID 25152275.
- ^ Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (27 January 2016). "Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista". Proceedings of the Royal Society B: Biological Sciences. 283 (1823): 20152802. doi:10.1098/rspb.2015.2802. ISSN 0962-8452. PMC 4795036. PMID 26817772.
- ^ a b c d e Adl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; Smirnov, Alexey; Agatha, Sabine; Berney, Cedric; Brown, Matthew W.; Burki, Fabien; Cárdenas, Paco; Čepička, Ivan; Chistyakova, Lyudmila; Del Campo, Javier; Dunthorn, Micah; Edvardsen, Bente; Eglit, Yana; Guillou, Laure; Hampl, Vladimír; Heiss, Aaron A.; Hoppenrath, Mona; James, Timothy Y.; Karnkowska, Anna; Karpov, Sergey; Kim, Eunsoo; Kolisko, Martin; Kudryavtsev, Alexander; Lahr, Daniel J.G.; Lara, Enrique; Le Gall, Line (26 September 2018). "Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes". The Journal of Eukaryotic Microbiology. 66 (1): 4–119. doi:10.1111/JEU.12691. PMC 6492006. PMID 30257078.
- ^ Bowles, Alexander M.C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C.J. (2023). "The origin and early evolution of plants". Trends in Plant Science. 28 (3): 312–329. doi:10.1016/j.tplants.2022.09.009. hdl:10871/131900.
- ^ H.S. Yoon; R.A. Andersen; S.M. Boo; D. Bhattacharya (17 February 2009). "Stramenopiles". Encyclopedia of Microbiology (Third Edition): 721–731. doi:10.1016/B978-012373944-5.00253-4. Retrieved 2 March 2024.
- ^ Lynn, Denis H. (2017). "Ciliophora". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 679–730. doi:10.1007/978-3-319-28149-0_23. ISBN 978-3-319-28147-6.
- ^ Votýpka, Jan; Modrý, David; Oborník, Miroslav; Šlapeta, Jan; Lukeš, Julius (2017). "Apicomplexa". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 567–624. doi:10.1007/978-3-319-28149-0_20. ISBN 978-3-319-28147-6.
- ^ Saldarriaga, Juan F.; Taylor, F. J. R. 'Max' (2017). "Dinoflagellata". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 625–678. doi:10.1007/978-3-319-28149-0_22. ISBN 978-3-319-28147-6.
- ^ Biard, Tristan (2022). "Diversity and ecology of Radiolaria in modern oceans". Environmental Microbiology. 24 (5): 2179–2200. Bibcode:2022EnvMi..24.2179B. doi:10.1111/1462-2920.16004. PMC 9322464. PMID 35412019.
- ^ Pawlowski, J.; Lejzerowicz, F.; Esling, P. (2014-10-01). "Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future". The Biological Bulletin. 227 (2): 93–106. doi:10.1086/BBLv227n2p93. ISSN 0006-3185. PMID 25411369. S2CID 24388876.
- ^ a b Cavalier-Smith, Thomas (May 2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa". European Journal of Protistology. 49 (2): 115–178. doi:10.1016/j.ejop.2012.06.001.
- ^ a b Weston, Elizabeth J.; Eglit, Yana; Simpson, Alastair G.B. (2023). "Kaonashia insperata gen. et sp. nov., a eukaryotrophic flagellate, represents a novel major lineage of heterotrophic stramenopiles". Journal of Eukaryotic Microbiology. 71 (1): e13003. doi:10.1111/jeu.13003. PMID 37803921.
- ^ a b Williamson, Kelsey; Eme, Laura; Baños, Hector; McCarthy, Charley G. P.; Susko, Edward; Kamikawa, Ryoma; Orr, Russell J. S.; Muñoz-Gómez, Sergio A.; Minh, Bui Quang; Simpson, Alastair G. B.; Roger, Andrew J. (24 April 2025). "A robustly rooted tree of eukaryotes reveals their excavate ancestry". Nature. 640 (8060): 974–981. doi:10.1038/s41586-025-08709-5.
- ^ a b c Tikhonenkov, Denis V.; Jamy, Mahwash; Borodina, Anastasia S.; Belyaev, Artem O.; Zagumyonnyi, Dmitry G.; Prokina, Kristina I.; Mylnikov, Alexander P.; Burki, Fabien; Karpov, Sergey A. (16 March 2022). "On the origin of TSAR: morphology, diversity and phylogeny of Telonemia". Open Biology. 12 (3). The Royal Society. doi:10.1098/rsob.210325. ISSN 2046-2441. PMC 8924772. PMID 35291881.
- ^ Eliáš, Marek (2021). "Protist diversity: Novel groups enrich the algal tree of life". Current Biology. 31 (11): R733 – R735. Bibcode:2021CBio...31.R733E. doi:10.1016/j.cub.2021.04.025. PMID 34102125. Retrieved 13 May 2025.
- ^ Bar-On YM, Phillips R, Milo R (June 2018). "The biomass distribution on Earth". Proceedings of the National Academy of Sciences of the United States of America. 115 (25): 6506–6511. doi:10.1073/pnas.1711842115. PMC 6016768. PMID 29784790.
- ^ Gast, Rebecca J. (2017). "Centrohelida and Other Heliozoan-Like Protists" (PDF). In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. p. 955–971. doi:10.1007/978-3-319-28149-0_28. ISBN 978-3-319-28149-0. LCCN 2017945328. Retrieved 9 June 2025.
- ^ Nikolaev, Sergey I.; Berney, Cédric; Fahrni, José F.; Bolivar, Ignacio; Polet, Stephane; Mylnikov, Alexander P.; Aleshin, Vladimir V.; Petrov, Nikolai B.; Pawlowski, Jan (25 May 2004). "The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes". Proceedings of the National Academy of Sciences. 101 (21): 8066–8071. doi:10.1073/pnas.0308602101. ISSN 0027-8424. PMC 419558. PMID 15148395. Retrieved 9 June 2025.
- ^ a b Yazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022). "The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris". Open Biology. 12 (4): 210376. doi:10.1098/rsob.210376. PMC 9006020. PMID 35414259.
- ^ Shishkin, Yegor; Drachko, Daria; Zlatogursky, Vasily V. (22 April 2021). "The smallest known heliozoans are the Erebor lineage (nom. clad. n.) inside Microheliella maris (Eukaryota, Diaphoretickes), with the amendation of M. maris diagnosis and description of Berkeleyaesol magnus gen. nov., comb. nov. (Eukaryota, incertae sedis)". International Journal of Systematic and Evolutionary Microbiology. 71 (4). doi:10.1099/ijsem.0.004776. ISSN 1466-5026.
- ^ a b c d Eglit, Yana; Shiratori, Takashi; Jerlström-Hultqvist, Jon; Williamson, Kelsey; Roger, Andrew J.; Ishida, Ken-Ichiro; Simpson, Alastair G.B. (22 January 2024). "Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora". Current Biology. 34 (2): 451–459.e6. doi:10.1016/j.cub.2023.12.032. Retrieved 15 June 2025.
- ^ a b c d Torruella, Guifré; Galindo, Luis Javier; Moreira, David; López-García, Purificación (6 January 2025). "Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life". Current Biology. 35 (1): 198–207.e4. Bibcode:2025CBio...35..198T. bioRxiv 10.1101/2024.05.15.594285. doi:10.1016/j.cub.2024.10.075. ISSN 1879-0445. PMID 39642877.
- ^ a b c Čepička, Ivan; Valt, Marek; Pánek, Tomáš; Mirzoyan, Seda; Tice, Alexander; Jones, Robert; Dohnálek, Vít; Dolezal, Pavel; Mikšátko, Jiří; Rotterová, Johana; Hrubá, Pavla; Brown, Matthew (15 May 2025). "Rare microbial relict sheds light on an ancient eukaryotic supergroup (PREPRINT Version 1)". Research Square. doi:10.21203/rs.3.rs-5245440/v1.
- ^ Burki, Fabien; Okamoto, Noriko; Pombert, Jean-François; Keeling, Patrick J. (2012). "The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins". Proceedings of the Royal Society of London B: Biological Sciences. 279 (1736): 2246–2254. doi:10.1098/rspb.2011.2301. PMC 3321700. PMID 22298847.
- ^ Yazaki, Euki; Yabuki, Akinori; Nishimura, Yuki; Shiratori, Takashi; Hashimoto, Tetsuo; Inagaki, Yuji (4 November 2022). "Microheliella maris possesses the most gene-rich mitochondrial genome in Diaphoretickes". Frontiers in Ecology and Evolution. 10: 1030570. doi:10.3389/fevo.2022.1030570. ISSN 2296-701X.
- ^ Lax, Gordon; Eglit, Yana; Eme, Laura; Bertrand, Erin M.; Roger, Andrew J.; Simpson, Alastair G. B. (2018). "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes". Nature. 564 (7736): 410–414. Bibcode:2018Natur.564..410L. doi:10.1038/s41586-018-0708-8. S2CID 205570993.
- ^ Simpson, Alastair G. B.; Slamovits, Claudio H.; Archibald, John M. (2017). "Protist Diversity and Eukaryote Phylogeny" (PDF). In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.). Handbook of the Protists. Vol. 1 (2nd ed.). Cham: Springer International Publishing. pp. 1–22. doi:10.1007/978-3-319-28149-0_45. ISBN 978-3-319-28149-0. LCCN 2017945328.