Jump to content

2025 in reptile paleontology

From Wikipedia, the free encyclopedia

List of years in reptile paleontology
In paleontology
2022
2023
2024
2025
2026
2027
2028
In paleobotany
2022
2023
2024
2025
2026
2027
2028
In arthropod paleontology
2022
2023
2024
2025
2026
2027
2028
In paleoentomology
2022
2023
2024
2025
2026
2027
2028
In paleomalacology
2022
2023
2024
2025
2026
2027
2028
In archosaur paleontology
2022
2023
2024
2025
2026
2027
2028
In paleomammalogy
2022
2023
2024
2025
2026
2027
2028
In paleoichthyology
2022
2023
2024
2025
2026
2027
2028

This catalog of fossil reptile research published in 2025 includes a list of new taxa that were described during the year 2025, as well as other significant discoveries and events related to reptile paleontology that occurred in 2025.

Squamates

[edit]

New squamate taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Wautaugategu[1]

Gen. et sp. nov

Valid

Bourque & Stanley

Miocene (Barstovian)

 United States
( Georgia (U.S. state))

A member of the family Teiidae belonging to the subfamily Tupinambinae. The type species is W. formidus.

Zhongyuanxi[2]

Gen. et sp. nov

Valid

Xu et al.

Late Cretaceous (possibly Maastrichtian)

Qiupa Formation

 China

A member of Anguimorpha, possibly a stem-varanid. The type species is Z. jiai.

Squamate research

[edit]
  • A study on the biogeography of squamates throughout their evolutionary history is published by Wilenzik & Pyron (2025), who identify Europe and northeastern Asia as the most likely areas of the origin of Squamata.[3]
  • López-Rueda et al. (2025) describe new mosasaur material from the Upper Cretaceous Labor-Tierna and Plaeners formations (Colombia), including the first record of a member of the genus Globidens from northern South America reported to date.[4]
  • A study on patterns of the foraging area preference of members of different mosasaur groups throughout the Late Cretaceous, as indicated by carbon isotope composition of tooth enamel, is published by Polcyn et al. (2025).[5]
  • A study on teeth of mosasaurs from the Campanian Bearpaw Formation (Alberta, Canada), providing evidence of dietary niche differentiation of the studied taxa, is published by Holwerda et al. (2025).[6]
  • A study on diversity of tooth shapes and likely dietary preferences of Maastrichtian mosasaurs from the Phosphates of Morocco is published by Bardet et al. (2025), who also transfer Platecarpus (?) ptychodon Arambourg (1952) to the genus Gavialimimus, and interpret it as a probable senior synonym of Gavialimimus almaghribensis.[7]
  • Grigoriev et al. (2025) describe fossil material of Latoplatecarpus cf. L. willistoni from the Campanian Rybushka Formation (Saratov Oblast, Russia), representing the first known record of the genus outside of North America.[8]
  • Georgalis (2025) revises Plesiotortrix edwardsi from the Quercy Phosphorites Formation (France), and considers it to be nomen dubium.[9]
  • The oldest cranial remains of a member of Constrictores (the group including boas and pythons) described and figured from the Cenozoic of Europe to date are reported from the Eocene (Ypresian) strata from the Cos locality (Quercy Phosphorites Formation, France) by Čerňanský et al. (2025).[10]

Ichthyosauromorphs

[edit]

New ichthyosauromorph taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Gadusaurus[11]

Gen. et sp. nov

Valid

Pratas e Sousa et al.

Early Jurassic (Sinemurian)

Água de Madeiros Formation

 Portugal

An ichthyosaur belonging to the group Baracromia. The type species is G. aqualigneus.

Ichthyosauromorph research

[edit]

Sauropterygians

[edit]

New sauropterygian taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Sauropterygian research

[edit]
  • Su et al. (2025) describe two new specimens of Glyphoderma kangi, providing new information on the anatomy of the studied placodont.[15]
  • Ruciński et al. (2025) describe fossil material of a member of the genus Henodus from the Upper Triassic Silves Group (Portugal), expanding known geographical range of members of the genus.[16]
  • A study on the skull anatomy and phylogenetic affinities of Keichousaurus hui is published by Xu et al. (2025).[17]
  • Cabezuelo-Hernández et al. (2025) report evidence of non-infectious pathologies in the dorsal vertebrae of the holotype specimen of Paludidraco multidentatus, different from vertebral pathologies reported in other marine reptile specimens as interpreted as most likely caused by either a congenital disorder or long-term biomechanical stress.[18]
  • Marx et al. (2025) report evidence of preservation of skin traces, including smooth skin on the tail and scaly skin on the flippers, as well as evidence of preservation of melanosomes and keratinocytes in a plesiosaur specimen from the Lower Jurassic Posidonia Shale (Germany).[19]
  • Redescription and a study on the affinities of Seeleyosaurus guilelmiimperatoris is published by Sachs et al. (2025), who interpret Plesiopterys wildi as a taxon distinct from S. guilelmiimperatoris.[20]
  • Description of a new specimen of Plesiopterys wildi from the Toarcian Posidonia Shale (Germany) and a study on the phylogenetic affinities of the species is published by Marx et al. (2025).[21]
  • Zverkov, Grigoriev & Nikiforov (2025) describe new fossil material of Polycotylus sopozkoi from the Upper Cretaceous (Santonian–Campanian) strata from the Izhberda quarry (Orenburg Oblast, Russia), providing new information on the morphology of members of the species.[22]

Turtles

[edit]

New turtle taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Calvarichelys[23]

Gen. et sp. nov

Valid

Oriozabala et al.

Late Cretaceous (CampanianMaastrichtian)

La Colonia Formation

 Argentina

A member of the family Chelidae. The type species is C. coloniensis.

Chelonoidis pucara[24]

Sp. nov

Valid

Agnolín & Chimento

Pleistocene (Lujanian)

Lujan Formation

 Argentina

A tortoise, a species of Chelonoidis.

Thaichelys[25] Gen. et comb. nov. Szczygielski et al. Late Triassic (Norian) Huai Hin Lat Formation  Thailand A member of the family Proterochersidae. The type species is "Proganochelys" ruchae.

Wabanbara[26]

Gen. et sp. nov

White, Gillespie & Hand

Miocene

Riversleigh World Heritage Area

 Australia

A member of the family Chelidae. The type species is W. ringtailensis.

Turtle research

[edit]

Archosauriformes

[edit]

Archosaurs

[edit]

Other archosauriforms

[edit]

New miscellaneous archosauriform taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Retymaijychampsa[36]

Gen. et sp. nov

Valid

Müller

Triassic (Ladinian or Carnian)

Santa Maria Formation

 Brazil

A member of the family Proterochampsidae. The type species is R. beckerorum.

Thuringopelta[37]

Gen. et sp. nov

Valid

Sues & Schoch

Late Triassic (Carnian)

Stuttgart Formation

 Germany

A member of the family Doswelliidae. The type species is T. werneburgi.

Archosauriform research

[edit]
  • Müller (2025) describes fossil material of a proterochampsid from the Middle Triassic strata from the Posto site (Pinheiros-Chiniquá Sequence; Brazil), possibly representing a previously undescribed species and expanding known diversity of Middle Triassic proterochampsids from South America.[38]

Other reptiles

[edit]

New miscellaneous reptile taxa

[edit]
Name Novelty Status Authors Age Type locality Country Notes Images

Akkedops[39]

Gen. et sp. nov

Valid

Mooney, Scott & Reisz

Late Permian

Endothiodon Assemblage Zone

 South Africa

A stem-saurian. The type species is A. bremneri.

Kapes signus[40]

Sp. nov

Valid

Riccetto et al.

Middle Triassic (Anisian)

 Spain

A procolophonid

Marmoretta drescherae[41]

Sp. nov

Valid

Guillaume, Puértolas-Pascual & Moreno-Azanza

Late Jurassic (Kimmeridgian)

Alcobaça Formation

 Portugal

Other reptile research

[edit]
  • Piñeiro et al. (2025) reevaluate purported evidence for the presence of tail autotomy in mesosaurs, and consider it more likely that purported evidence of autotomy actually shows that mesosaurs may display a previously undocumented vertebral type in their caudal vertebrae.[42]
  • A redescription of the skull anatomy of Milleropsis pricei is published by Jenkins et al. (2025) based on μCT data.[43]
  • A redescription of the skull anatomy of Milleretta rubidgei is published by Jenkins et al. (2025) based on μCT data.[44]
  • Smith et al. (2025) study the taphonomy of aggregations of skeletons of Procolophon trigoniceps from Brazil, South Africa and Antarctica, interpreted as indicating that the studied reptiles lived in environments switching from drought to deluge conditions in response to climatic instability, and interpret P. trigoniceps as a likely group-living, fossorial animal.[45]
  • Redescription and a study on the affinities of Thadeosaurus colcanapi is published by Buffa et al. (2025).[46]
  • Evidence of adaptations for climbing in the skeleton of Marmoretta oxoniensis is presented by Ford et al. (2025).[47]
  • Colombi et al. (2025) report the discovery of an aggregation of four juvenile specimens of Hyperodapedon sanjuanensis from the Ischigualasto Formation (Argentina), interpreted as probable evidence of social and burrowing behavior of the studied rhynchosaur.[48]

Reptiles in general

[edit]
  • Review of the fossil record of Triassic-Jurassic reptiles from the Connecticut Valley (Connecticut and Massachusetts, United States) is published by Galton, Regalado Fernández & Farlow (2025), who consider Ammosaurus major to be a separate taxon from Anchisaurus polyzelus.[49]
  • Fossil material of nothosauroids, indeterminate eosauropterygians and a member of the genus Macrocnemus is described from the Ladinian Sceltrich beds (Meride Limestone, Monte San Giorgio, Switzerland) by Renesto & Magnani (2025), providing evidence of similarity of reptile faunas from the Sceltrich beds and underlying Cassina beds.[50]
  • Evidence from the study of the phosphate oxygen isotope composition of plesiosaur, ichthyosaur and metriorhynchid fossil material from the Middle and Upper Jurassic strata in France and Upper Jurassic to Lower Cretaceous strata in Norway, interpret as consistent with homeothermy and endothermy in ichthyosaurs, poikilothermy and endothermy in plesiosaurs, and uncertain thermoregulation strategy resulting in poikilothermy in metriorhynchids, is presented by Séon et al. (2025).[51]
  • Marquina-Blasco et al. (2025) describe the assemblage of reptile fossils from the Miocene strata from the Crevillente 2 and Crevillente 15 sites (Spain), possibly including the oldest fossil material of a member of the genus Timon reported to date, and interpret the studied fossils as indicating that the Vallesian Crisis did not have a major impact on the herpetofaunal communities of the Iberian Peninsula.[52]
  • Evidence from the study of extant reptiles, indicative of utility of studies of calcium and strontium isotope composition of hard tissues for reconstructions of diets of fossil reptiles, is presented by Weber et al. (2025).[53]

References

[edit]
  1. ^ Bourque, J. R.; Stanley, E. L. (2025). "A tegu-like lizard (Teiidae, Tupinambinae) from the Middle Miocene Climatic Optimum of the southeastern United States". Journal of Paleontology: 1–15. doi:10.1017/jpa.2024.89.
  2. ^ Xu, L.; Dong, L.; Gao, D.; Li, Y.; Wu, Y.; Chang, F.; Li, J.; Evans, S. (2025). "A new anguimorph lizard from the Upper Cretaceous of Henan Province, China". Journal of Systematic Palaeontology. 23 (1). 2470790. doi:10.1080/14772019.2025.2470790.
  3. ^ Wilenzik, I. V.; Pyron, R. A. (2025). "European origins of Squamata supported by biogeographic analysis of fossil-tip-dated phylogenies using paleocontinental plate-tectonic models". Comptes Rendus Palevol. 24 (9): 139–158. doi:10.5852/cr-palevol2025v24a9.
  4. ^ López-Rueda, J. S.; Polcyn, M. J.; Lindgren, J.; Cruz-Guevara, L. E.; Rodríguez-Sañudo, A. S. (2025). "Mosasaur (Reptilia, Mosasauridae) remains from the Upper Cretaceous of Colombia, including the first occurrence of the genus Globidens". Cretaceous Research. 166. 105997. Bibcode:2025CrRes.16605997L. doi:10.1016/j.cretres.2024.105997.
  5. ^ Polcyn, M. J.; Robbins, J. A.; Schulp, A. S.; Lindgren, J.; Jacobs, L. L. (2025). "The Evolution of Mosasaurid Foraging Behavior Through the Lens of Stable Carbon Isotopes". Diversity. 17 (4). 291. doi:10.3390/d17040291.
  6. ^ Holwerda, F. M.; Mitchell, M. T.; van de Kerk, M.; Schulp, A. S. (2025). "Mosasaur Feeding Ecology from the Campanian Bearpaw Formation, Alberta, Canada: A Preliminary Multi-Proxy Approach". Diversity. 17 (3). 205. doi:10.3390/d17030205.
  7. ^ Bardet, N.; Fischer, V.; Jalil, N.-E.; Khaldoune, F.; Yazami, O. K.; Pereda-Suberbiola, X.; Longrich, N. (2025). "Mosasaurids Bare the Teeth: An Extraordinary Ecological Disparity in the Phosphates of Morocco Just Prior to the K/Pg Crisis". Diversity. 17 (2). 114. Bibcode:2025Diver..17..114B. doi:10.3390/d17020114.
  8. ^ Grigoriev, D. V.; Arkhangelsky, M. S.; Zverkov, N. G.; Gubarev, D. I. (2025). "First record of a rare plioplatecarpine mosasaur Latoplatecarpus in Europe as further evidence of a semi-global Campanian marine vertebrate fauna". Cretaceous Research. 106102. doi:10.1016/j.cretres.2025.106102.
  9. ^ Georgalis, G. L. (2025). "Revision of the enigmatic snake Plesiotortrix edwardsi Rochebrune, 1884 from the Phosphorites du Quercy, France". Comptes Rendus Palevol. 24 (4): 51–59. doi:10.5852/cr-palevol2025v24a4.
  10. ^ Čerňanský, A.; Georgalis, G. L.; Tabuce, R.; Vidalenc, D. (2025). "The first snake from the lower Eocene (MP 10-11) of the Cos locality, Phosphorites du Quercy, France". Comptes Rendus Palevol. 24 (5): 61–66. doi:10.5852/cr-palevol2025v24a5.
  11. ^ Pratas e Sousa, J.; Morais Roldão, I.; Ríos, M.; Puertólas-Pascual, E. (2025). "A new ichthyosaur from the Lower Jurassic of Portugal (Iberian Peninsula)". Acta Palaeontologica Polonica. 70 (1): 179–192. doi:10.4202/app.01199.2024.
  12. ^ Zhao, B.; Zou, Y.; Li, J.; Chen, G.; Wan, S.; Yuan, J.; Wu, K. (2025). "早三叠世南漳湖北鳄(双孔亚纲:湖北鳄目)的头骨新材料及补充研究" [New cranial material and supplementary study on the Early Triassic Huphesuchus nanchangensis (Diapsida: Hupehsuchidae)]. Acta Geologica Sinica. 99 (2): 337–351. doi:10.19762/j.cnki.dizhixuebao.2023332.
  13. ^ Pardo-Pérez, J. M.; Malkowski, M.; Zambrano, P.; Lomax, D. R.; Gascó Martín, C.; Kaluza, J.; Ortíz, H.; Pérez Marín, A.; Villa-Martínez, R.; Yurac, M.; Cáceres, M.; Zegers, A.; Delgado, J.; Scapini, F.; Astete, C.; Maxwell, E. E. (2025). "The first gravid ichthyosaur from the Hauterivian (Early Cretaceous): a complete Myobradypterygius hauthali von Huene, 1927 excavated from the border of the Tyndall Glacier, Torres del Paine National Park, southernmost Chile". Journal of Vertebrate Paleontology. e2445705. doi:10.1080/02724634.2024.2445705.
  14. ^ Meyerkort, R. D.; Kear, B. P.; Everhart, M. J.; Siversson, M. (2025). "Youngest fossil occurrence of ichthyosaurs from the Southern Hemisphere". Cretaceous Research. 168. 106071. Bibcode:2025CrRes.16806071M. doi:10.1016/j.cretres.2024.106071.
  15. ^ Su, C. X.; Gu, S.-L.; Jiang, D.-Y.; Motani, R.; Rieppel, O.; Tintori, A.; Zhou, M.; Sun, Z.-Y. (2025). "Two new specimens of Glyphoderma kangi (Placodontia, Sauropterygia, Reptilia) from the Middle Triassic of South China". Journal of Vertebrate Paleontology. 44 (3). e2439530. doi:10.1080/02724634.2024.2439530.
  16. ^ Ruciński, M.; Campos, H.; Mateus, O.; Werneburg, I. (2025). "Novel record of placodont remains including a Henodus cranium from the Upper Triassic Silves Group of the Algarve, southern Portugal". Journal of Vertebrate Paleontology. e2460445. doi:10.1080/02724634.2025.2460445.
  17. ^ Xu, J.; Guo, Y.; Ma, Y.; Wang, W.; Cheng, L.; Han, F. (2025). "New digital anatomical data of Keichousaurus hui (Reptilia: Sauropterygia) and its phylogenetic implication". PeerJ. 13. e19012. doi:10.7717/peerj.19012. PMC 11967422.
  18. ^ Cabezuelo-Hernández, A.; de Miguel Chaves, C.; Ortega, F.; Pérez-García, A. (2025). "Pathological vertebrae in the holotype of Paludidraco multidentatus (Sauropterygia, Simosauridae) from the Upper Triassic of El Atance (Central Spain)". Fossil Record. 28 (1): 133–145. doi:10.3897/fr.28.e148714.
  19. ^ Marx, M.; Sjövall, P.; Kear, B. P.; Jarenmark, M.; Eriksson, M. E.; Sachs, S.; Nilkens, K.; Op De Beeck, M.; Lindgren, J. (2025). "Skin, scales, and cells in a Jurassic plesiosaur". Current Biology. 35 (5): 1113–1120.e3. Bibcode:2025CBio...35.1113M. doi:10.1016/j.cub.2025.01.001. PMID 39919740.
  20. ^ Sachs, S.; Madzia, D.; Marx, M.; Roberts, A. J.; Hampe, O.; Kear, B. P. (2025). "The osteology, taxonomy, and phylogenetic placement of Seeleyosaurus guilelmiimperatoris (Plesiosauroidea, Microcleididae) from the Lower Jurassic Posidonia Shale of Germany". The Anatomical Record. doi:10.1002/ar.25620. PMID 39981975.
  21. ^ Marx, M.; Sachs, S.; Kear, B. P.; Eriksson, M. E.; Nilkens, K.; Lindgren, J. (2025). "A new specimen of Plesiopterys wildi reveals the diversification of cryptoclidian precursors and possible endemism within European Early Jurassic plesiosaur assemblages". PeerJ. 13. e18960. doi:10.7717/peerj.18960. PMC 11967415.
  22. ^ Zverkov, N. G.; Grigoriev, D. V.; Nikiforov, A. V. (2025). "New polycotylid plesiosaur skeletons from the Upper Cretaceous of the Southern Urals provide additional diagnostic features of Polycotylus sopozkoi and demonstrate its variation". Historical Biology: An International Journal of Paleobiology: 1–34. doi:10.1080/08912963.2025.2472161.
  23. ^ Oriozabala, Carolina; de la Fuente, Marcelo S.; Holley, J. Alfredo; Sterli, Juliana (2025-03-05). "A new chelid turtle (Testudines, Pleurodira) from the Cretaceous of Patagonia, Argentina". Papers in Palaeontology. 11 (2): e70006. doi:10.1002/spp2.70006. ISSN 2056-2802.
  24. ^ Agnolín, F. L.; Chimento, N. R. (2025). "A giant among giants: a new land tortoise from the Pleistocene of the Argentine Pampas". Rivista Italiana di Paleontologia e Stratigrafia. 131 (2): 241–259. doi:10.54103/2039-4942/27229.
  25. ^ Szczygielski, Tomasz; Dróżdż, Dawid; Chanthasit, Phornphen; Manitkoon, Sita; Ditbanjong, Pitaksit (2025-03-19). "The Triassic turtle of Thailand – revision of 'Proganochelys' ruchae". PLOS ONE. 20 (3). doi:10.1371/journal.pone.0316338 (inactive 20 March 2025). ISSN 1932-6203.{{cite journal}}: CS1 maint: DOI inactive as of March 2025 (link)
  26. ^ White, A. W.; Gillespie, A. K.; Hand, S. J. (2025). "Wabanbara ringtailensis—a new chelid turtle (Pleurodira: Chelidae) from mid-Miocene deposits of the Riversleigh World Heritage Area in Australia". Alcheringa: An Australasian Journal of Palaeontology. doi:10.1080/03115518.2025.2477464.
  27. ^ Neto, D. J. M.; Hsiou, A. S.; Guilherme, E.; Costa, L. A. T.; Ferreira, G. S. (2025). "Concealed morphological diversity revealed by new fossils of Chelus (Testudines, Chelidae) from the Upper Miocene of the Acre Basin, Brazil". Journal of South American Earth Sciences. 155. 105408. Bibcode:2025JSAES.15505408M. doi:10.1016/j.jsames.2025.105408.
  28. ^ de la Fuente, M. S.; Luna, C. A.; Zurita, A. E.; Galli, C. I.; Quiñones, S. I.; Robledo, J. M.; Candela, A. M.; Landa Ramírez, E. M.; González Ruiz, P.; Alonso, R. N. (2025). "Phrynops Wagler, 1830 (Testudines, Chelidae) in the Late Miocene of Palo Pintado Formation, Salta province, Argentina, with comments on taxonomy and paleoenvironmental settings". Journal of South American Earth Sciences. 105530. doi:10.1016/j.jsames.2025.105530.
  29. ^ Pérez-García, A. (2025). "A taxonomic revision of the Cenomanian bothremydid turtle Algorachelus parva from Israel and morphological variation within its genus". Palaeontologia Electronica. 28 (1). 28.1.a2. doi:10.26879/1398.
  30. ^ Martín-Jiménez, M.; Pérez-García, A. (2025). "The first neuroanatomical study of a marine pleurodire (the large Paleocene bothremydid Azzabaremys moragjonesi) reveals convergences with other clades of pelagic turtles". Fossil Record. 28 (1): 1–15. Bibcode:2025FossR..28....1M. doi:10.3897/fr.28.e130418.
  31. ^ Tong, H.; Buffetaut, E.; Claude, J. (2025). "Skull morphology of Foxemys (Testudines: Pleurodira: Bothremydidae) from the Upper Cretaceous of Massecaps, Cruzy, southern France". Historical Biology. doi:10.1080/08912963.2025.2478209.
  32. ^ Jannello, J. M.; Bona, P.; Santillana, S. N.; Reguero, M. A. (2025). "First comparative paleohistological study of Eocene Antarctic turtle shell bones". Ameghiniana. doi:10.5710/AMGH.22.01.2025.3614.
  33. ^ Guerrero, A.; Smith, T.; Pérez-García, A. (2025). "Bioerosional marks in the shells of two sea turtle taxa from the middle Eocene of Belgium". Fossil Record. 28 (1): 45–56. Bibcode:2025FossR..28...45G. doi:10.3897/fr.28.e141743.
  34. ^ Lehman, T. M.; Tomlinson, S. L.; Shiller, T. A.; Wick, S. L. (2025). "Turtles of the Aguja and Javelina Formations, Upper Cretaceous (Campanian – Maastrichtian), West Texas". Cretaceous Research. 106145. doi:10.1016/j.cretres.2025.106145.
  35. ^ Adrian, B.; Smith, H. F.; McDonald, A. T. (2025). "A revised turtle assemblage from the Upper Cretaceous Menefee Formation (New Mexico, North America) with evolutionary and paleobiostratigraphic implications". PeerJ. 13. e19340. doi:10.7717/peerj.19340.
  36. ^ Müller, R. T. (2025). "A new proterochampsid archosauriform from the Middle–Upper Triassic of Southern Brazil". Acta Palaeontologica Polonica. 70 (1): 7–16. doi:10.4202/app.01204.2024.
  37. ^ Sues, H.-D.; Schoch, R. R. (2025). "A doswelliid archosauriform from the Upper Triassic (Carnian) Stuttgart Formation of Thuringia (Germany)". Journal of Vertebrate Paleontology. e2455949. doi:10.1080/02724634.2025.2455949.
  38. ^ Müller, R. T. (2025). "New proterochampsid remains from the Middle Triassic of Brazil enhance the group's diversity during its origins". The Science of Nature. 112 (2). 28. doi:10.1007/s00114-025-01981-5. PMID 40126648.
  39. ^ Mooney, E. D.; Scott, D.; Reisz, R. R. (2025). "A new stem saurian reptile from the late Permian of South Africa and insights into saurian evolution". Swiss Journal of Palaeontology. 144 (1). 10. doi:10.1186/s13358-025-00351-y. PMC 11865139. PMID 40027993.
  40. ^ Riccetto, M.; Mujal, E.; Bolet, A.; De Jaime-Soguero, C.; De Esteban-Trivigno, S.; Fortuny, J. (2025). "Tooth morphotypes shed light on the paleobiodiversity of Middle Triassic terrestrial vertebrate ecosystems from NE Iberian Peninsula (southwestern Europe)". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 39–62. Bibcode:2025RIPS..13122340R. doi:10.54103/2039-4942/22340.
  41. ^ Guillaume, A. R. D.; Puértolas-Pascual, E.; Moreno-Azanza, M. (2025). "Revisiting the choristodere and stem-lepidosaur specimens of the Guimarota Beds (Kimmeridgian, Portugal): taxonomic implications". Acta Palaeontologica Polonica. 70 (1): 77–96. doi:10.4202/app.01202.2024.
  42. ^ Piñeiro, G.; Ferigolo, J.; Farias, B. D. M.; Núñez Demarco, P.; Laurin, M. (2025). "Caudal autotomy in Mesosaurus tenuidens Gervais, 1865 under scrutiny and a surprising new pattern of vertebral organization in the mesosaur tail". Geodiversitas. 47 (2): 17–38. doi:10.5252/geodiversitas2025v47a2.
  43. ^ Jenkins, X. A.; Benson, R. B. J.; Ford, D. P.; Browning, C.; Fernandez, V.; Griffiths, E.; Choiniere, J.; Peecook, B. R. (2025). "Cranial osteology and neuroanatomy of the late Permian reptile Milleropsis pricei and implications for early reptile evolution". Royal Society Open Science. 12 (1). 241298. Bibcode:2025RSOS...1241298J. doi:10.1098/rsos.241298. PMC 11707879. PMID 39780968.
  44. ^ Jenkins, Xavier A; Benson, Roger B J; Elliott, Maya; Jeppson, Gabriel; Dollman, Kathleen; Fernandez, Vincent; Browning, Claire; Ford, David P; Choiniere, Jonah; Peecook, Brandon R (2025-03-03). "New information on the anatomically derived millerettid Milleretta rubidgei from the latest Permian based on μCT data". Zoological Journal of the Linnean Society. 203 (3): zlaf004. doi:10.1093/zoolinnean/zlaf004. ISSN 0024-4082.
  45. ^ Smith, R. M. H.; Wolvaardt, F. P.; Cisneros, J. C.; Pinheiro, F. L.; Bevitt, J. J.; Benoit, J. (2025). "Skeletal accumulations of the parareptile Procolophon trigoniceps reflect fossorial response to early Triassic climatic instability across southern Gondwana". Palaeogeography, Palaeoclimatology, Palaeoecology. 112978. doi:10.1016/j.palaeo.2025.112978.
  46. ^ Buffa, V.; Jalil, N.-E.; Falconnet, J.; Vincent, P. (2025). "The neodiapsid Thadeosaurus colcanapi from the upper Permian of Madagascar". Papers in Palaeontology. 11 (2). e70008. doi:10.1002/spp2.70008.
  47. ^ Ford, D. P.; Benson, R. B. J.; Griffiths, E. F.; Evans, S. E. (2025). "Evidence for clinging arboreality in a Middle Jurassic stem lepidosaur". Proceedings of the Royal Society B: Biological Sciences. 292 (2045). 20250080. doi:10.1098/rspb.2025.0080. PMID 40237078.
  48. ^ Colombi, C. E.; Martinez, R. N.; Alcober, O. A.; Díaz, M.; Drovandi, J. M.; Alarcón, C. M. (2025). "First evidence of aggregational behaviour by the archosauromorph Hyperodapedon sanjuanensis from the Upper Triassic Ischigualasto Formation, Argentina: Evidence for burrow habitats?". Palaeogeography, Palaeoclimatology, Palaeoecology. 662. 112742. Bibcode:2025PPP...66212742C. doi:10.1016/j.palaeo.2025.112742.
  49. ^ Galton, P. M.; Regalado Fernández, O. R.; Farlow, J. O. (2025). "Bones of dinosaurs and other reptiles from the Triassic-Jurassic of the Connecticut Valley: Over 200 years of published history". Revue de Paléobiologie, Genève. 44 (2): 1–45.
  50. ^ Renesto, S.; Magnani, E. (2025). "Tetrapod remains from the Ladinian (Middle Triassic) Sceltrich beds of Monte San Giorgio UNESCO site". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 201–212. doi:10.54103/2039-4942/27087 (inactive 20 March 2025).{{cite journal}}: CS1 maint: DOI inactive as of March 2025 (link)
  51. ^ Séon, N.; Vincent, P.; Delsett, L. L.; Poulallion, E.; Suan, G.; Lécuyer, C.; Roberts, A. J.; Fourel, F.; Charbonnier, S.; Amiot, R. (2025). "Reassessment of body temperature and thermoregulation strategies in Mesozoic marine reptiles". Paleobiology: 1–21. doi:10.1017/pab.2025.2.
  52. ^ Marquina-Blasco, R.; Morales-Flores, D.; Bartolomé-Bombín, Á. D.; Montoya, P. (2025). "Herpetofaunal remains (Anura, Crocodylia, Testudines, Squamata) from the Late Miocene of the Crevillente Area (SE Spain): palaeobiogeographical and palaeoecological implications". Rivista Italiana di Paleontologia e Stratigrafia. 131 (1): 85–115. Bibcode:2025RIPS..13122382M. doi:10.54103/2039-4942/22382.
  53. ^ Weber, M.; Weber, K.; Winkler, D. E.; Tütken, T. (2025). "Calcium and strontium isotopes in extant diapsid reptiles reflect dietary tendencies—a reference frame for diet reconstructions in the fossil record". Proceedings of the Royal Society B: Biological Sciences. 292 (2038). 20242002. doi:10.1098/rspb.2024.2002. PMC 11706660. PMID 39772958.