Jump to content

Template:QM AM GM HM inequality visual proof.svg

From Wikipedia, the free encyclopedia
Geometric proof without words that max (a,b) > root mean square (RMS) or quadratic mean (QM) > arithmetic mean (AM) > geometric mean (GM) > harmonic mean (HM) > min (a,b) of two distinct positive numbers a and b[note 1]
  1. ^ If NM = a and PM = b. AM = AM of a and b, and radius r = AQ = AG.
    Using Pythagoras' theorem, QM² = AQ² + AM² ∴ QM = √AQ² + AM² = QM.
    Using Pythagoras' theorem, AM² = AG² + GM² ∴ GM = √AM² − AG² = GM.
    Using similar triangles, HM/GM = GM/AM ∴ HM = GM²/AM = HM.