Ciechocinek Formation
Ciechocinek Formation | |
---|---|
Stratigraphic range: Lower Toarcian ~ Tenuicostatum-Bifrons | |
![]() Northern Germany units, including the Ciechocinek and it´s sister Grimmen Formation | |
Type | Geological formation |
Unit of | |
Sub-units | |
Underlies |
|
Overlies | |
Area | Polish Basin |
Thickness | 140 m (460 ft) |
Lithology | |
Primary | Claystone & abundant Clay Pits[1] |
Other | Sandy-clayey sediments deposited with traces of breaks and weathering. Grey heteroliths, Mudstones, Claystones, Siltstones and fine-grained Sandstones[1] |
Location | |
Country |
|
Extent | Approx. 205,000 km2 (79,000 sq mi) |
Type section | |
Named for | Ciechocinek, Poland |
Named by | Stefan Zbigniew Różycki (as an informal unit)[1][2] |
Year defined | 1958 |
The Ciechocinek Formation (also known as the Gryfice Formation at Suliszewo[3]) is a Jurassic (lower Toarcian) geological formation extending across the Baltic coast, primarily in Poland, with minor occurrences in Lithuania and Kaliningrad.[4] It represents one of the largest deltaic systems in the fossil record, covering approximately 7.1 × 100,000 km² in the Polish realm.[5] Deposited in a brackish-marine embayment within the eastern arm of the Mid-European Toarcian Basin, it is a sister unit to the Grimmen Formation, the Sorthat Formation (Bornholm) and Lava Formation (Lithuania), with interfingering relationships with the Posidonia Shale in western regions.[4] Its main equivalents include the Posidonia Shale, upper Rydeback Member (Rya Formation, southern Sweden), Fjerritslev Formation (Danish Basin), Sorthat Formation, and Lava Formation.[1] Informal units in Poland, such as the Gryfice Beds (now fused with the Ciechocinek, Pomerania region), Lower Łysiec beds (Częstochowa region), and "Estheria series", are also correlated.[1]
History
[edit]The Ciechocinek Formation's significance was first recognized in the mid-20th century through drilling in Poland. In 1954, a borehole in Ciechocinek revealed Jurassic sediments, initially dated broadly to the Lias (Early Jurassic).[6] In 1958, geologist Stefan Zbigniew Różycki proposed the "Seria Ciechocińska" (Ciechocinek Series) as an informal unit, describing clay-rich strata with high kaolinite content, suggesting a Late Lias age and comparing it to the Ostrowiec series (Świętokrzyskie Mountains) and Borucice Formation.[2]
By the 1960s, the formation was formalized as "Formazaja Ciechocińska," confirmed as Lower Toarcian, with correlations to the Posidonia Shale.[7] The 1970s established it as the Toarcian succession of the Polish Basin, and the 2000s advanced studies on its stratigraphy and paleoenvironment.[7] The "Estheria series", identified in the 1950s in the Świętokrzyskie Mountains with Euestheria, was integrated as a subunit, reflecting limnic shore facies.[8]
Sedimentology
[edit]The Ciechocinek Formation comprises a lithological suite from a brackish-marine deltaic system in a shallow basin (>20 m deep). Key lithologies include:
- Mudstones and Siltstones: Poorly consolidated, with fine sandy lenses (1 mm–20 cm thick), except for sideritic mudstones (brown, red, olive shades).[9]
- Claystones and Shales: High kaolinite content from tropical weathering.[9]
- Sandstones: Quartz-rich, poorly consolidated, with chlorite and kaolinite.[9]
- Concretions: Siderite and pyrite (up to 20 cm), with spherulites in boreholes (e.g., Brody-Lubienia). Carbonate concretions preserve fossils.[10]
- Minerals: Kaolinite, chlorite, illite, quartz, calcite, siderite, with volcanic-derived pyrolusite from Central Skåne Volcanic Province.[11]
- Organic Matter: Plant remains, wood fragments, charcoal, indicating wildfires.[9]
Overlies Pliensbachian sandstones, mostly of the Drzewica Formation. Clay dominates in the elegantulum subzone, followed by fine sands (Bifrons-Thouarsense).[12] The Estheria subunit, with paleosols, coals, and Euestheria, reflects limnic shore settings.[8] Quiet mud and silt sedimentation from river mouths, with sand influx from storms and eustatic changes. Paleocurrents formed laminated sand-silt streaks and ripple marks. Sediments sourced from the eastern Sudetes and Cracow-Czêstochowa Monocline, with volcanic input from Central Skåne Volcanic Province.[9][11]
Paleoenvironment
[edit]The Ciechocinek Formation represents a shallow brackish to freshwater embayment in the Polish Basin, with lagoonal, deltaic, and marine facies. It spanned the Eastern Bohemian Massif and southwestern Fennoscandian margin, with deltas at Parkoszowice and Brody-Lubienia.[13] Climate was Tropical to subtropical, humid, with perennial rainfall driving kaolinite formation. Milankovitch cycles and reduced kaolinite at the Tenuicostatum-Falciferum boundary suggest drier intervals linked to a Tethyan super-greenhouse event.[14] Depositional Setting suggest Ironstone paleoenvironment with swamps, lagoons, estuaries, and low-energy deltas, resembling Caribbean systems. A central brackish-marine basin (Kaszewy Kościelne) was surrounded by lagoons and deltas. A Toarcian transgression flooded the Polish Trough, followed by regression forming lakes and mangroves.[9][15] Flora was dominated by Bennettitales, Cycads, and ferns, with 80% spores (e.g., Minerisporites richardsoni) indicating humidity.[16] Charcoal, lignites, and polycyclic aromatic hydrocarbons (e.g., phenanthrene) record six wildfire episodes post-Toarcian Anoxic Event.[15] Euestheria, rare foraminifera, and trace fossils (Planolites, Palaeophycus) reflect brackish conditions. Upper levels show reduced salinity due to fluvial input.[17] Equivalent formations in Germany (e.g., Grimmen Formation) yield diverse insects and dinosaur remains.[18][19] Negative 13C anomalies indicate warming, with enhanced erosion delivering diverse minerals. Organic carbon reflects terrestrial burial, decoupled from global climate shifts.[20]
Paleobiota
[edit]Foraminifera
[edit]Genus | Species | Location | Abundance | Notes |
---|---|---|---|---|
Ammobaculites[21] | A. vetusta, A. linea | Mechowo 1 Borehole | Abundant | Marine foraminiferan, Ammomarginulininae |
Ammodiscus[22] | A. glumaceous, A. orbis | Pabianice, Łutowiec, Żarki | Rare | Marine foraminiferan, Ammodiscinae |
Citharina[23] | C. sp. | Boża Wola, Gorzów Wiepolski | Rare | Marine foraminiferan, Vaginulininae |
Crithionina[21] | C. sp. | Aleksandrów I Borehole, Gorzów Wiepolski | Rare | Marine foraminiferan, Saccamminidae |
Haplophragmoides[21] | H. tryssa, H. platus | Aleksandrów I Borehole, Gorzów Wiepolski | Rare | Marine foraminiferan, Lituoloidea |
Dinoflagellates
[edit]Genus | Species | Location | Abundance | Notes |
---|---|---|---|---|
Luehndea[24] | L. spinosa | Kozłowice Clay Pit, Boroszów | Abundant | Marine dinoflagellate, Luehndeoideae |
Nannoceratopsis[24] | N. senex, N. triceras | Kozłowice Clay Pit, Boroszów | Dominant | Marine dinoflagellate, Nannoceratopsiaceae |
Fungi
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Xylophagous Fungi[25] | Morphotypes A-G | Brody-Lubienia, Gorzów Wielkopolski | Saprophyte fungal spores, linked to climate-driven wood decomposition |
Invertebrates
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Diplocraterion[26] | D. parallelum | Kozłowice Clay Pit, Boroszów, Parkoszowice 58 BN, Gorzków BN | U-shaped vertical burrows (Domichnia), likely by Polychaeta or Sipunculans |
Gyrochorte[26] | G. isp. | Kozłowice Clay Pit, Boroszów | Winding, horizontal double-ridge burrows (Fodinichnia), by Polychaeta (e.g., Pectinaria) |
Helminthopsis[26] | H. isp. | Kozłowice Clay Pit, Boroszów | Simple, horizontal grazing trails (Fodinichnia), by Polychaeta or Priapulida |
Palaeophycus[26] | P. tubularis | Kozłowice Clay Pit, Boroszów | Straight or curved tubular burrows (Domichnia), by Polychaeta or insects |
Planolites[26] | P. montanus, P. beverleyensis | Kozłowice Clay Pit, Boroszów | Common curved cylindrical traces (Pascichnia), by Polychaeta deposit-feeders |
Protovirgularia[26] | P. isp. | Kozłowice Clay Pit, Boroszów | Bilobate traces (Pascichnia), by Bivalvia or Branchiopoda |
Spongeliomorpha[26][27] | S. isp. | Kozłowice Clay Pit, Boroszów, Pawłowice 40 Borehole | Storm-filled, striated tunnels (Repichnia/Fodinichnia), by Crustacea (e.g., Anomura) |
Teichichnus[28] | Teichichnus isp. | Gorzów Wielkopolski IG 1 Borehole | Vertical spreite burrows (Fodinichnia), by Echiura or Holothurians |
Annelida
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Dictyothylakos[29] | D. pesslerae | Brody-Lubienia, Ciechocinek | Freshwater Clitellata cocoons, resembles leech cocoons |
Bivalvia
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Eolamprotula[30] | E. cremeri | Żarnów, Wąsosz | Freshwater mussel, Unionidae |
Meleagrinella[31] | M. substriata | Gorzow Wielkopolski, Kozłowice | Saltwater scallop, Oxytomidae |
Crustacea
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Euestheria[8][32] | E. opalina, E. minuta | Kozlowice, Boroszów | Freshwater clam shrimp, Lioestheriidae |
Liasina[30] | L. lanceolata | Żuki, Gorzków | Marine ostracodan, Pontocyprididae |
Vertebrates
[edit]Genus | Species | Location | Notes |
---|---|---|---|
Ceratodus[28] | C. sp. | Gorzów Wielkopolski | Freshwater lungfish, Ceratodontidae |
Hybodus[28] | H. spp. | Gorzów Wielkopolski | Marine shark, Hybodontiformes |
Saurichthys?[28] | S. spp. | Gorzów Wielkopolski | Marine Fish, Saurichthyidae |
Plantae
[edit]The Łęka Coal Basin, known since 1800, hosts Pliensbachian-Toarcian coals from nearshore deposition in the Blanowice Formation.[33] Biomolecules like labdanoic acid and ferruginol occur in the Mrzygłód clay-pit and boreholes (e.g., Wysoka Lelowska 47Ż).[33] These sub-bituminous coals (%Rr 0.47–0.56) show high vitrinite and inertinite, evidencing wildfires.[33] The Kaszewy coals (~150 m, Kaszewy-1 borehole) in a nearshore-deltaic setting contain charcoal and polycyclic aromatic hydrocarbons, linked to Toarcian wildfires and the anoxic event.[34] Fossil resins from Jaworznik 124Ż and Blanowice coals contain sesqui- and diterpenoids from conifers (e.g., Pinaceae, Cupressaceae), associated with Pliensbachian/Toarcian wildfires and peat fires.[33]
Floral Remains
[edit]The Lower Toarcian flora, dominated by megaspores like Paxillitriletes phyllicus (Isoetales), reflects a warm, humid climate during the Toarcian anoxic event, shifting from Pliensbachian pollen to megaspores due to a global transgression.[35] Blanowice coals yield fossil wood, likely Agathoxylon.[36] The Lublin upland flora includes cycads, Bennettitales, and ferns, with some reworked Carboniferous material.[37]
Taxa Summary
[edit]Spores like Cingulatisporites floridus (Anthocerotaceae) and Rogalskaisporites cicatricosus (Sphagnopsida) indicate humid moss-rich environments.[38][39] - **Lycophyta**: Abundant megaspores, e.g., Paxillitriletes phyllicus (Isoetales) and Acanthotriletes levidensis (Selaginellaceae), reflect water-dependent flora.[40][41] Spores such as Florinisporites ovatus (Equisetopsida) suggest horsetails in humid settings.[38] Fern spores, including Cyathidites minor (Cyatheaceae) and Todisporites hartzi (Osmundaceae), indicate diverse ferns in fluvial and deltaic environments.[39][38]
Pollen like Bennettistemon bursigerum (Williamsoniaceae) and Chasmatosporites apertus (Zamiaceae) points to cycads and Bennettitales.[38][39] Ginkgocycadophytus nitidus (Ginkgoaceae) and Eucommiidites troedssonii (Erdtmanithecales) suggests ginkgo-like and gnetophyte flora.[42] Conifer remains, including Agathoxylon agathiforme (Araucariaceae) wood and pollen like Araucariacites australis and Pityosporites haploxylon (Pinaceae), indicate dominant coniferous forests.[43][39]
See also
[edit]- Blue Lias, England
- Charmouth Mudstone Formation, England
- Jurensismergel Formation, Germany
- Posidonia Shale, Germany
- Sorthat Formation, Denmark
- Hasle Formation, Denmark
- Zagaje Formation, Poland
- Drzewica Formation, Poland
- Borucice Formation, Poland
- Rotzo Formation, Italy
- Saltrio Formation, Italy
- Moltrasio Formation, Italy
- Marne di Monte Serrone, Italy
- Calcare di Sogno, Italy
- Podpeč Limestone, Slovenia
- Coimbra Formation, Portugal
- El Pedregal Formation, Spain
- Fernie Formation, Canada
- Whiteaves Formation, British Columbia
- Navajo Sandstone, Utah
- Ziliujing Formation, China
- Yanan Formation, China
- Aganane Formation, Morocco
- Tafraout Group, Morocco
- Azilal Formation, Morocco
- Budoš Limestone, Montenegro
- Kota Formation, India
- Cañadón Asfalto Formation, Argentina
- Los Molles Formation, Argentina
- Kandreho Formation, Madagascar
- Elliot Formation, South Africa
- Clarens Formation, South Africa
- Evergreen Formation, Australia
- Cattamarra Coal Measures, Australia
- Hanson Formation, Antarctica
- Mawson Formation, Antarctica
References
[edit]- ^ a b c d e Pieñkowski, G. (2004). "The epicontinental Lower Jurassic of Poland". Polish Geological Institute Special Papers. 12 (1): 1–154. S2CID 128922070.
- ^ a b Rózycki, S.Z. (1958). "Dolna jura poludniowych Kujaw". Biul. Inst. Geol. 133 (1): 1–99.
- ^ Luboń, K. (2021). "Influence of Injection Well Location on CO2 Geological Storage Efficiency". Energies. 14 (24): 86–104. doi:10.3390/en14248604. Retrieved 2 January 2022.
- ^ a b Barth, G.; Pieńkowski, G.; Zimmermann, J.; Franz, M.; Kuhlmann, G. (2018). "Palaeogeographical evolution of the Lower Jurassic: high-resolution biostratigraphy and sequence stratigraphy in the Central European Basin". Geological Society, London, Special Publications. 469 (1): 341–369. Bibcode:2018GSLSP.469..341B. doi:10.1144/SP469.8. S2CID 134043668. Retrieved 8 September 2021.
- ^ Golonka, J. (2007). "Late Triassic and Early Jurassic palaeogeography of the world". Palaeogeography, Palaeoclimatology, Palaeoecology. 244 (4): 297–307. Bibcode:2007PPP...244..297G. doi:10.1016/j.palaeo.2006.06.041. Retrieved 3 June 2023.
- ^ Samsonowicz, J. (1954). "Wyniki hydrogeologiczne dwu głebokich wierceń w Ciechocinku: Hydrogeologic results of two deep drillings in Ciechocinek (North-West Poland)". Biul. Inst..Geol. 91 (1): 121–301.
- ^ a b Żelichowski, A. M. (1966). "sedymentologicznych materiału rdzeniowego na przykładzie utworów karbońskich z Ostrzeszowa". Kwartalnik Geologiczny. 10 (3): 742.
- ^ a b c Jurkiewiczowa, I. (1967). "Lias zachodniego obrzeżenia Gór Świętokrzyskich i jego paralelizacja z liasem Wyżyny Krakowsko-Częstochowskiej" (PDF). Biul. Inst. Geol. 200 (1): 5–132. Archived from the original (PDF) on 1 January 2022. Retrieved 1 January 2022.
- ^ a b c d e f Leonowicz, P. (2005). "The Ciechocinek Formation (Lower Jurassic) of SW Poland: petrology of green clastic rocks". Geological Quarterly. 49 (3): 317–330. Retrieved 21 December 2021.
- ^ Leonowicz, P. (2007). "Origin of siderites from the Lower Jurassic Ciechocinek Formation from SW Poland". Geological Quarterly. 51 (1): 67–78. Retrieved 21 December 2021.
- ^ a b Bergelin, I.; Obst, K.; Söderlund, U.; Larsson, K.; Johansson, L. (2011). "Mesozoic rift magmatism in the North Sea region: 40 Ar/39 Ar geochronology of Scanian basalts and geochemical constraints". International Journal of Earth Sciences. 100 (4): 787–804. Bibcode:2011IJEaS.100..787B. doi:10.1007/s00531-010-0516-3. S2CID 128811834.
- ^ Stumpf, Sebastian; Ansorge, Jörg; Grimmberger, Gunther (2016). "Grätensandsteine und andere Geschiebe des oberen Lias (Toarcium) aus Norddeutschland [Upper Liassic sandstones with fish remains (so-called Grätensandsteine) and other Toarcian glacial erratics from northern Germany]". Geschiebekunde Aktuell. 32 (4): 121–141. Retrieved 30 July 2021.
- ^ Ruebsam, W.; Pieńkowski, G.; Schwark, L. (2020). "Toarcian climate and carbon cycle perturbations–its impact on sea-level changes, enhanced mobilization and oxidation of fossil organic matter". Earth and Planetary Science Letters. 546 (1): 546. Bibcode:2020E&PSL.54616417R. doi:10.1016/j.epsl.2020.116417. S2CID 224911816. Retrieved 13 October 2021.
- ^ Brański, P. (2010). "Kaolinite peaks in early Toarcian profiles from the Polish Basin–an inferred record of global warming". Geological Quarterly. 54 (1): 15–24. Retrieved 21 December 2021.
- ^ a b Pointer, R. (2019). "Fire & Global Change During Key Intervals of the Late Triassic & Early Jurassic with a Focus on the Central Polish Basin" (PDF). University of Exeter. Retrieved 12 October 2021.
- ^ Pieñkowski, G.; Waksmundzk, M. (2009). "Palynofacies in Lower Jurassic epicontinental deposits of Poland: tool to interpret sedimentary environments" (PDF). Episodes. 32 (1): 21–32. doi:10.18814/epiiugs/2009/v32i1/004. S2CID 131735991. Retrieved 21 December 2021.
- ^ Leonowicz, P. (2011). "Sedimentation of Lower Toarcian (Lower Jurassic) brackish deposits from the Częstochowa-Wieluń region (SW Poland)". Acta Geologica Polonica. 61 (2): 215–241. Retrieved 21 December 2021.
- ^ Ansorge, J. (2003). "Insects from the Lower Toarcian of Middle Europe and England". Proceedings of the Second Palaeoentomological Congress, Acta Zoologica Cracoviensia. 46 (1): 291–310. Retrieved 30 July 2021.
- ^ Haubold, H. (1990). "Ein neuer Dinosaurier (Ornithischia, Thyreophora) aus dem Unteren Jura des nördlichen Mitteleuropa". Revue de Paléobiologie. 9 (1): 149–177. Retrieved 24 October 2021.
- ^ Brański, P. (2012). "The mineralogical record of the Early Toarcian stepwise climate changes and other environmental variations (Ciechocinek Formation, Polish Basin)". Volumina Jurassica. 10 (10): 1–24. Retrieved 21 December 2021.
- ^ a b c Kopik, J. (1960). "Mikropaleontologiczna charakterystyka liasu dolnego doggeru Polski". Geological Quarterly. 4 (4): 921–935. Retrieved 21 December 2021.
- ^ Kopik, J.; Marcinkiewicz, T. (1997). "Jura dolna: Biostratygrafia". Prace Paƒstwowego Instytutu Geologicznego. 153 (1): 196–205.
- ^ Jurkiewiczowa, I. (1967). "Lias zachodniego obrzeżenia". Biul. Inst. Geol. 200 (1): 5–132.
- ^ a b Barski, M.; Leonowicz, P. (2002). "Dinoflagellates of Lower Jurassic outcrops at Kozłowice and Boroszów (southern Poland)". Przegląd Geologiczny. 50 (5): 411–414. Retrieved 21 December 2021.
- ^ Pieńkowski, G; Hodbod, M.; Ullmann, C. V (2016). "Fungal decomposition of terrestrial organic matter accelerated Early Jurassic climate warming". Scientific Reports. 6 (1): 31930. Bibcode:2016NatSR...631930P. doi:10.1038/srep31930. PMC 4995404. PMID 27554210.
- ^ a b c d e f g Leonowicz, P. (2008). "Trace fossils from the Lower Jurassic Ciechocinek Formation, SW Poland". Volumina Jurassica. 6 (6): 89–98. Retrieved 21 December 2021.
- ^ Leonowicz, P. M. (2016). "Tubular tempestites from Jurassic mudstones of southern Poland". Geological Quarterly. 60 (2): 385–394. Retrieved 21 December 2021.
- ^ a b c d Czapowski, G.; Dadlez, R.; Feldman-Olszewska, A.; Gortyńska, S.; Jaskowiak-Schoeneichowa, M.; Kasiński, J.R.; Znosko, J. (2014). "Szczegółowy profil litologiczno-stratygraficzny: Gorzów Wielkopolski IG" (PDF). Polska Bibliografia Naukowa. 144 (1): 1–378. Retrieved 21 December 2021.
- ^ Marcinkiewicz, T. (1971). "The stratigraphy of the Rhaetian and Liasin Poland". Prace Instytut Geologiczny. 65 (1): 1–57.
- ^ a b Kopik, J. (1998). "Lower and Middle Jurassic". Biuletyn Państwowego Instytutu Geologicznego. 378 (1): 67–129.
- ^ Hesselbo, S.P.; Pieńkowski, G. (2011). "Stepwise atmospheric carbon-isotope". Earth and Planetary Science Letters. 301 (1–2): 365–372. doi:10.1016/j.epsl.2010.11.021.
- ^ Leonowicz, P. (2011). "Sedimentation of Lower Toarcian". Acta Geologica Polonica. 61 (2): 215–241.
- ^ a b c d Rybicki, M.; Marynowski, L.; Misz-Kennan, M.; Simoneit, B.R.T. (2016). "Molecular tracers preserved in Lower Jurassic 'Blanowice brown coals'". Organic Geochemistry. 102 (1): 77–92. Bibcode:2016OrGeo.102...77R. doi:10.1016/j.orggeochem.2016.09.012.
- ^ Pointer, R. (2019). "Fire & Global Change". University of Exeter.
- ^ Marcinkiewicz, T.; Fijałkowska-Mader, A.; Pieńkowski, G. (2014). "Megaspore zones". Biuletyn Państwowego Instytutu Geologicznego. 457 (7): 15–42.
- ^ Lilpop, J. (1917). "Mikroskopisch-anatomische Untersuchungen". Bull. Acad. Sci. Crac., Sci. Math. Nat. 12 (7): 6–24.
- ^ Ruebsam, W.; Pieńkowski, G.; Schwark, L. (2020). "Toarcian climate". Earth and Planetary Science Letters. 546 (1): 546. doi:10.1016/j.epsl.2020.116417.
- ^ a b c d Grabowska, I. (1970). "Flora from the Lower and Middle Jurassic". Catalogue of Fossils. Mesozoic. 2 (2): 47–53.
- ^ a b c d Rogalska, M. (1954). "Spore and pollen analysis". Biuletyn - Instytutu Geologiczny. 89 (1): 1–46.
- ^ Marcinkiewicz, T.; Fijałkowska-Mader, A.; Pieńkowski, G (2014). "Poziomy megasporowe". Biuletyn Państwowego Instytutu Geologicznego. 457 (1): 15–42.
- ^ Rogalska, M. (1971). "Division of the Liassic deposits". Mémoires du Bureau des Recherches Géologiques et Minières. 75 (3): 201–210.
- ^ Rogalska, M. (1980). "Lower Jurassic microflora". Budowa Geologiczna Polski. 3 (2): 52–97.
- ^ Philippe, M.; Pacyna, G.; Wawrzyniak, Z.; Barbacka, M.; Boka, K.; Filipiak, P.; Uhl, D. (2015). "News from an old wood". Review of Palaeobotany and Palynology. 221 (1): 83–91. doi:10.1016/j.revpalbo.2015.06.006.