Isotopes of krypton
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Standard atomic weight Ar°(Kr) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
There are 34 known isotopes of krypton (36Kr) with atomic mass numbers from 67 to 103. Naturally occurring krypton is made of five stable isotopes and one (78
Kr) which is slightly radioactive with an extremely long half-life, plus traces of radioisotopes that are produced by cosmic rays in the atmosphere. Atmospheric krypton today is, however, considerably radioactive due almost entirely to artificial 85Kr.[5]
List of isotopes
[edit]Nuclide [n 1] |
Z | N | Isotopic mass (Da)[6] [n 2][n 3] |
Half-life[1] [n 4][n 5] |
Decay mode[1] [n 6] |
Daughter isotope [n 7][n 8] |
Spin and parity[1] [n 9][n 5] |
Natural abundance (mole fraction) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Excitation energy | Normal proportion[1] | Range of variation | |||||||||||||||||
67Kr | 36 | 31 | 66.98331(46)# | 7.4(29) ms | β+? (63%) | 67Br | 3/2-# | ||||||||||||
2p (37%) | 65Se | ||||||||||||||||||
68Kr | 36 | 32 | 67.97249(54)# | 21.6(33) ms | β+, p (>90%) | 67Se | 0+ | ||||||||||||
β+? (<10%) | 68Br | ||||||||||||||||||
p? | 67Br | ||||||||||||||||||
69Kr | 36 | 33 | 68.96550(32)# | 27.9(8) ms | β+, p (94%) | 68Se | (5/2−) | ||||||||||||
β+ (6%) | 69Br | ||||||||||||||||||
70Kr | 36 | 34 | 69.95588(22)# | 45.00(14) ms | β+ (>98.7%) | 70Br | 0+ | ||||||||||||
β+, p (<1.3%) | 69Se | ||||||||||||||||||
71Kr | 36 | 35 | 70.95027(14) | 98.8(3) ms | β+ (97.9%) | 71Br | (5/2)− | ||||||||||||
β+, p (2.1%) | 70Se | ||||||||||||||||||
72Kr | 36 | 36 | 71.9420924(86) | 17.16(18) s | β+ | 72Br | 0+ | ||||||||||||
73Kr | 36 | 37 | 72.9392892(71) | 27.3(10) s | β+ (99.75%) | 73Br | (3/2)− | ||||||||||||
β+, p (0.25%) | 72Se | ||||||||||||||||||
73mKr | 433.55(13) keV | 107(10) ns | IT | 73Kr | (9/2+) | ||||||||||||||
74Kr | 36 | 38 | 73.9330840(22) | 11.50(11) min | β+ | 74Br | 0+ | ||||||||||||
75Kr | 36 | 39 | 74.9309457(87) | 4.60(7) min | β+ | 75Br | 5/2+ | ||||||||||||
76Kr | 36 | 40 | 75.9259107(43) | 14.8(1) h | β+ | 76Br | 0+ | ||||||||||||
77Kr | 36 | 41 | 76.9246700(21) | 72.6(9) min | β+ | 77Br | 5/2+ | ||||||||||||
77mKr | 66.50(5) keV | 118(12) ns | IT | 77Kr | 3/2− | ||||||||||||||
78Kr[n 10] | 36 | 42 | 77.92036634(33) | 9.2 +5.5 −2.6 ±1.3×1021 y[2] |
Double EC | 78Se | 0+ | 0.00355(3) | |||||||||||
79Kr | 36 | 43 | 78.9200829(37) | 35.04(10) h | β+ | 79Br | 1/2− | ||||||||||||
79mKr | 129.77(5) keV | 50(3) s | IT | 79Kr | 7/2+ | ||||||||||||||
80Kr | 36 | 44 | 79.91637794(75) | Stable | 0+ | 0.02286(10) | |||||||||||||
81Kr[n 11] | 36 | 45 | 80.9165897(12) | 2.29(11)×105 y | EC | 81Br | 7/2+ | 6×10−13[7] | |||||||||||
81mKr | 190.64(4) keV | 13.10(3) s | IT | 81Kr | 1/2− | ||||||||||||||
EC (0.0025%) | 81Br | ||||||||||||||||||
82Kr | 36 | 46 | 81.9134811537(59) | Stable | 0+ | 0.11593(31) | |||||||||||||
83Kr[n 12] | 36 | 47 | 82.914126516(9) | Stable | 9/2+ | 0.11500(19) | |||||||||||||
83m1Kr | 9.4053(8) keV | 156.8(5) ns | IT | 83Kr | 7/2+ | ||||||||||||||
83m2Kr | 41.5575(7) keV | 1.830(13) h | IT | 83Kr | 1/2− | ||||||||||||||
84Kr[n 12] | 36 | 48 | 83.9114977271(41) | Stable | 0+ | 0.56987(15) | |||||||||||||
84mKr | 3236.07(18) keV | 1.83(4) μs | IT | 84Kr | 8+ | ||||||||||||||
85Kr[n 12] | 36 | 49 | 84.9125273(21) | 10.728(7) y | β− | 85Rb | 9/2+ | 1×10−11[7] | |||||||||||
85m1Kr[n 12] | 304.871(20) keV | 4.480(8) h | β− (78.8%) | 85Rb | 1/2− | ||||||||||||||
IT (21.2%) | 85Kr | ||||||||||||||||||
85m2Kr | 1991.8(2) keV | 1.82(5) μs |
IT | 85Kr | (17/2+) | ||||||||||||||
86Kr[n 13][n 12] | 36 | 50 | 85.9106106247(40) | Observationally Stable[n 14] | 0+ | 0.17279(41) | |||||||||||||
87Kr | 36 | 51 | 86.91335476(26) | 76.3(5) min | β− | 87Rb | 5/2+ | ||||||||||||
88Kr | 36 | 52 | 87.9144479(28) | 2.825(19) h | β− | 88Rb | 0+ | ||||||||||||
89Kr | 36 | 53 | 88.9178354(23) | 3.15(4) min | β− | 89Rb | 3/2+ | ||||||||||||
90Kr | 36 | 54 | 89.9195279(20) | 32.32(9) s | β− | 90mRb | 0+ | ||||||||||||
91Kr | 36 | 55 | 90.9238063(24) | 8.57(4) s | β− | 91Rb | 5/2+ | ||||||||||||
β−, n? | 90Rb | ||||||||||||||||||
92Kr | 36 | 56 | 91.9261731(29) | 1.840(8) s | β− (99.97%) | 92Rb | 0+ | ||||||||||||
β−, n (0.0332%) | 91Rb | ||||||||||||||||||
93Kr | 36 | 57 | 92.9311472(27) | 1.287(10) s | β− (98.05%) | 93Rb | 1/2+ | ||||||||||||
β−, n (1.95%) | 92Rb | ||||||||||||||||||
94Kr | 36 | 58 | 93.934140(13) | 212(4) ms | β− (98.89%) | 94Rb | 0+ | ||||||||||||
β−, n (1.11%) | 93Rb | ||||||||||||||||||
95Kr | 36 | 59 | 94.939711(20) | 114(3) ms | β− (97.13%) | 95Rb | 1/2+ | ||||||||||||
β−, n (2.87%) | 94Rb | ||||||||||||||||||
β−, 2n? | 93Rb | ||||||||||||||||||
95mKr | 195.5(3) keV | 1.582(22) μs |
IT | 95Kr | (7/2+) | ||||||||||||||
96Kr | 36 | 60 | 95.942998(62)[8] | 80(8) ms | β− (96.3%) | 96Rb | 0+ | ||||||||||||
β−, n (3.7%) | 95Rb | ||||||||||||||||||
97Kr | 36 | 61 | 96.94909(14) | 62.2(32) ms | β− (93.3%) | 97Rb | 3/2+# | ||||||||||||
β−, n (6.7%) | 96Rb | ||||||||||||||||||
β−, 2n? | 95Rb | ||||||||||||||||||
98Kr | 36 | 62 | 97.95264(32)# | 42.8(36) ms | β− (93.0%) | 98Rb | 0+ | ||||||||||||
β−, n (7.0%) | 97Rb | ||||||||||||||||||
β−, 2n? | 96Rb | ||||||||||||||||||
99Kr | 36 | 63 | 98.95878(43)# | 40(11) ms | β− (89%) | 99Rb | 5/2−# | ||||||||||||
β−, n (11%) | 98Rb | ||||||||||||||||||
β−, 2n? | 97Rb | ||||||||||||||||||
100Kr | 36 | 64 | 99.96300(43)# | 12(8) ms | β− | 100Rb | 0+ | ||||||||||||
β−, n? | 99Rb | ||||||||||||||||||
β−, 2n? | 98Rb | ||||||||||||||||||
101Kr | 36 | 65 | 100.96932(54)# | 9# ms [>400 ns] |
β−? | 101Rb | 5/2+# | ||||||||||||
β−, n? | 100Rb | ||||||||||||||||||
β−, 2n? | 99Rb | ||||||||||||||||||
102Kr[9] | 36 | 66 | 0+ | ||||||||||||||||
103Kr[10] | 36 | 67 | |||||||||||||||||
This table header & footer: |
- ^ mKr – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ Bold half-life – nearly stable, half-life longer than age of universe.
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
n: Neutron emission - ^ Bold italics symbol as daughter – Daughter product is nearly stable.
- ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ Primordial radionuclide
- ^ Used to date groundwater
- ^ a b c d e Fission product
- ^ Formerly used to define the meter
- ^ Believed to decay by β−β− to 86Sr
- The isotopic composition refers to that in air.
Notable isotopes
[edit]This section needs additional citations for verification. (May 2018) |
Krypton-81
[edit]![]() | This section needs expansion with: Usage in hydrogeology, ATC=V09. You can help by adding to it. (October 2019) |
Krypton-81 (half-life 230,000 years) is useful in determining how old the water beneath the ground is. Radioactive krypton-81 is the product of spallation reactions with cosmic rays striking gases present in the Earth atmosphere, along with the six stable or nearly stable krypton isotopes.[11] The long half-life ensures that the isotope has a uniform concentration in the atmosphere and in surface water; when the water goes underground is supply is no longer replenished and decays, allowing dating of the residence time in deep aquifers in a range of 20,000 to a million years. The same long half-life renders detection of its decay impossible and, therefore, demands some form of mass spectrometry; even so, technical limitations of the method have traditionally required the sampling of very large volumes of water: several hundred liters or a few cubic meters of water (about a milligram of krypton). This is particularly challenging for dating pore water in deep clay aquitards with very low hydraulic conductivity.[12]
More recently, it has been announced[13] that samples an order of magnitude less can be used successfully.
The short-lived isomer (13 sec.) krypton-81m has medical uses [2] but is often considered impracticable as it must be generated from the rare rubidium-81. It almost entirely decays to the ground state with a monochromatic gamma ray.
Krypton-85
[edit]Krypton-85 (half-life 10.728 years) is produced by the nuclear fission of uranium and plutonium in nuclear weapons testing and in nuclear reactors, as well as by cosmic rays. An important goal of the Limited Nuclear Test Ban Treaty of 1963 was to eliminate the release of such radioisotopes into the atmosphere, and since 1963 much of that krypton-85 has had time to decay. However, it is almost inevitable that krypton-85 is released during the reprocessing of fuel rods from nuclear reactors,[14] which is far larger-volume than was ever nuclear testing.
Atmospheric concentration
[edit]The atmospheric concentration of krypton-85 around the North Pole is about 30 percent higher than that at the South Pole because nearly all of the world's nuclear reactors and all of its major nuclear reprocessing plants are located in the northern hemisphere, well north of the equator[15] and transfer of air between the hemispheres is slow.
The nuclear reprocessing plants with significant capacities are located in the United States, the United Kingdom, the French Republic, the Russian Federation, Mainland China (PRC), Japan, India, and Pakistan.
Krypton-86
[edit]Krypton-86 was formerly used to define the meter from 1960 until 1983, when the definition of the meter was based on the wavelength of the 606 nm (orange) spectral line of a krypton-86 atom.[16]
See also
[edit]Daughter products other than krypton
References
[edit]- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
- ^ a b Patrignani, C.; et al. (Particle Data Group) (2016). "Review of Particle Physics". Chinese Physics C. 40 (10): 100001. Bibcode:2016ChPhC..40j0001P. doi:10.1088/1674-1137/40/10/100001. See p. 768
- ^ "Standard Atomic Weights: Krypton". CIAAW. 2001.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ [1]
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
- ^ a b Lu, Zheng-Tian (1 March 2013). "What trapped atoms reveal about global groundwater". Physics Today. 66 (3): 74–75. Bibcode:2013PhT....66c..74L. doi:10.1063/PT.3.1926. Retrieved 29 June 2024.
- ^ Smith, Matthew B.; Murböck, Tobias; Dunling, Eleanor; Jacobs, Andrew; Kootte, Brian; Lan, Yang; Leistenschneider, Erich; Lunney, David; Lykiardopoulou, Eleni Marina; Mukul, Ish; Paul, Stefan F.; Reiter, Moritz P.; Will, Christian; Dilling, Jens; Kwiatkowski, Anna A. (2020). "High-precision mass measurement of neutron-rich 96Kr". Hyperfine Interactions. 241 (1): 59. Bibcode:2020HyInt.241...59S. doi:10.1007/s10751-020-01722-2. S2CID 220512482.
- ^ Sumikama, T.; et al. (2021). "Observation of new neutron-rich isotopes in the vicinity of Zr110". Physical Review C. 103 (1): 014614. Bibcode:2021PhRvC.103a4614S. doi:10.1103/PhysRevC.103.014614. hdl:10261/260248. S2CID 234019083.
- ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4): 044313. doi:10.1103/PhysRevC.109.044313.
- ^ Leya, I.; Gilabert, E.; Lavielle, B.; Wiechert, U.; Wieler, W. (2004). "Production rates for cosmogenic krypton and argon isotopes in H-chondrites with known 36Cl-36Ar ages" (PDF). Antarctic Meteorite Research. 17: 185–199. Bibcode:2004AMR....17..185L.
- ^ N. Thonnard; L. D. MeKay; T. C. Labotka (2001). Development of Laser-Based Resonance Ionization Techniques for 81-Kr and 85-Kr Measurements in the Geosciences (PDF) (Report). University of Tennessee, Institute for Rare Isotope Measurements. pp. 4–7. doi:10.2172/809813.
- ^ Le-Yi Tu, Guo-Min Yang, Cun-Feng Cheng, Gu-Liang Liu, Xiang-Yang Zhang, and Shui-Ming Hu (2014). "Analysis of Krypton-85 and Krypton-81 in a Few Liters of Air" (PDF). Analytical Chemistry. 86 (8): 4002–4007.
{{cite journal}}
: CS1 maint: multiple names: authors list (link) - ^ "Separation, Storage and Disposal of Krypton-85" (PDF). p. 8. Retrieved 2024-12-08.
- ^ "Resources on Isotopes". U.S. Geological Survey. Archived from the original on 2001-09-24. Retrieved 2007-03-20.
- ^ Baird, K. M.; Howlett, L. E. (1963). "The International Length Standard". Applied Optics. 2 (5): 455–463. Bibcode:1963ApOpt...2..455B. doi:10.1364/AO.2.000455.
External links
[edit]- Brookhaven National Laboratory: Krypton-101 information Archived 2017-10-18 at the Wayback Machine