DescriptionThermal Boundary Layer Thickness formed by heated fluid flow along a plate.jpg
English: Schematic drawing depicting heated fluid flow over a flat plate. A thermal and a velocity boundary layer are formed as the fluid moves along the plate. This picture depicts the two boundary layers along a heated plate.
Date
Source
Created using Microsoft Powerpoint
Previously published: Weyburne, David (2018). "New thickness and shape parameters for describing the thermal boundary layer," arXiv:1704.01120[physics.flu-dyn]
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
{{subst:Upload marker added by en.wp UW}} {{Information |Description = {{en|Schematic drawing depicting heated fluid flow over a flat plate. A thermal and a velocity boundary layer are formed as the fluid moves along the plate. This picture depicts the two boundary layers along a heated plate. }} |Source = Created using Microsoft Powerpoint<br/> '''Previously published:''' Weyburne, David (2018). "New thickness and shape parameters for describing the thermal boundary layer," arXiv:1704.0112...