Jump to content

Draft:Nonlinear electrodynamics

From Wikipedia, the free encyclopedia
  • Comment: Would like to see better sourcing for this, only two research papers given. Sophisticatedevening🍷(talk) 13:43, 31 March 2025 (UTC)



In high-energy physics, nonlinear electrodynamics (NED or NLED) refers to a family of generalizations of Maxwell electrodynamics which describe electromagnetic fields that exhibit nonlinear dynamics.[1] For a theory to describe the electromagnetic field (a U(1) gauge field), its action must be gauge invariant; in the case of , for the theory to not have Faddeev-Popov ghosts, this constraint dictates that the Lagrangian of a nonlinear electrodynamics must be a function of only (the Maxwell Lagrangian) and (where is the Levi-Civita tensor).[1][2][3] Notable NED models include the Born-Infeld model,[4] the Euler-Heisenberg Lagrangian,[5] and the CP-violating Chern-Simons theory .[2][6][7]

References

[edit]
  1. ^ a b Sorokin, Dmitri P. (2022). "Introductory Notes on Non-linear Electrodynamics and its Applications". Fortschritte der Physik. 70 (7–8). arXiv:2112.12118. doi:10.1002/prop.202200092.
  2. ^ a b Bi, Shihao; Tao, Jun (2021). "Holographic DC conductivity for backreacted NLED in massive gravity". Journal of High Energy Physics (6): 174. arXiv:2101.00912. Bibcode:2021JHEP...06..174B. doi:10.1007/JHEP06(2021)174.
  3. ^ Bruce, Stanley A. (2024). "Nonlinear electrodynamics and its possible connection to relativistic superconductivity: An example". Zeitschrift für Naturforschung A. 79 (11): 1041–1046. Bibcode:2024ZNatA..79.1041B. doi:10.1515/zna-2024-0136.
  4. ^ Born, M.; Infeld, L. (1934). "Foundations of the New Field Theory". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 144 (852): 425–451. Bibcode:1934RSPSA.144..425B. doi:10.1098/rspa.1934.0059.
  5. ^ Heisenberg, W.; Euler, H. (1936). "Folgerungen aus der Diracschen Theorie des Positrons". Zeitschrift für Physik (in German). 98 (11–12): 714–732. Bibcode:1936ZPhy...98..714H. doi:10.1007/bf01343663. ISSN 1434-6001.
  6. ^ Fu, Qi-Ming; Zhao, Li; Liu, Yu-Xiao (2021). "Weak deflection angle by electrically and magnetically charged black holes from nonlinear electrodynamics". Physical Review D. 104 (2): 024033. arXiv:2101.08409. Bibcode:2021PhRvD.104b4033F. doi:10.1103/PhysRevD.104.024033.
  7. ^ Delphenich, David (2003). "Nonlinear Electrodynamics and QED". arXiv:hep-th/0309108.