FOXG1-Related Disorder
FOXG1 syndrome | |
---|---|
Other names | FOXG1-related epileptic-dyskinetic encephalopathy, Rett syndrome, congenital variant. [1][2] |
![]() | |
FOXG1 syndrome is inherited in an Autosomal dominant fashion | |
Specialty | Medical genetics, Neurology |
Usual onset | From birth |
Causes | Mutation in a gene FOXG1 |
Differential diagnosis | Rett syndrome, CDKL5 deficiency disorder, Angelman syndrome |
Treatment | Physical therapy,Anti-dyskinetic medications, Antiseizure medication |
Frequency | 1:30 000 live births |
FOXG1-Related Disorder (FOXG1 syndrome) is a rare genetic disorder which is caused by mutation in a gene FOXG1.[3] The main signs of this disease are: severe intellectual disability, microcephaly, epilepsy, and hyperkinetic-dyskinetic movement disorder and hypotonia. with brain structure anomalies[4][5]
FOXG1 syndrome is inherited in autosomal dominant fashion.[6]
FOXG1 syndrome affects about 1/30 000 births, also about 1200 cases had been reported (As of January 1, 2025).[7]
Symptoms
[edit]Symptoms of FOXG1 syndrome are:[8]
Very frequent
- Abnormal hand movements
- Problems with walking
- Dyskinesia
- Diffiuclties with feeding
- Hypotonia
- Strabismus
- Progressive microcephaly
Frequent
- Anomalies of corpus callosum
- Abnormal movement
- Absence of speech
- Autistic behavior
- Bilateral tonic-clonic seizure
- Teeth grinding or clenching
- Choreoathetosis
- Intellectual disability
- Constipation
- Weight loss
- Delay in myelination
- Dystonic disorder
- Sialorrhea
- Focal seizures
- Gastro-esophageal reflux
- Hyperkinesis
- Frequently cries without apparent cause
- Infantile spasms
- Myoclonic jerks
- Oral-Facial Dyskinesia
- Paroxysmal bursts of laughter
- Poor eye contact
- Low height
- Severe postnatal growth deficiency
- Muscle Spasticity
- Vision problems
Occasional
- Abnormal breathing
- Corpus callosum agenesis/hypoplasia
- Developmental regression
- Scoliosis with or without kyphosis
- Pachygyria
- Hypoplasia of optic disk
- Poor speech
- Incapability to ambulate
Very rare
- Repeated seizure without recovery
Cause
[edit]As mentioned above, FOXG1 syndrome is caused by a heterozygous mutations in the gene FOXG1, This gene provides instructions for making a protein (Forkhead box protein G1).[6][9]
Most people with FOXG1 syndrome have a de-novo mutation (which means that mutation is new and none of the parents have it), although there have been cases of person inheriting the pathogenic variant of FOXG1 from healthy, mosaic parent.[10][11][12][13]
Pathophysiology
[edit]The FOXG1 protein is widely expressed in brain and is important for cortical development.[14]
Cortical Stem Cell Growth
[edit]One of the FOXG1 function is to regulate cell cycle of the neural progenitor cell, through activation of the proliferation and hindering the precoucious neural differentiation, in case of loss of the FOXG1, neural stem cell's cell cycle gets legnthened and exits the cell cycle.[15][16][17]
FOXG1 antagonizes the FOXO/SMAD pathway, which stimulates cortical neuron differentiation, because of antagonization, there is the reduced expression of p21, consequently low level of the p21 promotes stem cell pool expansion and prevents precocious exit from the cell cycle.[18][19]
Induction of Cortical Laminar Subtypes by FOXG1
[edit]Alongside the expansion of the progenitor cell pool through control of cell cycle regulators, the onset of FOXG1 expression in the forming forebrain activates a series of genetic and molecular processes in corticogenesis.[14] These events include dorsoventral patterning of the telencephalon to designate future compartments and specifying cell types through global switches in gene expression of targeted genes. The activation of FOXG1 and the early patterning of the forebrain seems to be primarily maintained across vertebrates, where compartmentalization of the forebrain is established by reciprocal interactions between morphogens and transcription factors. In the telencephalic territory, SIX3 expressed in the anterior neural plate, which competes with FOXG1 expression, whereby FGF8 which is expressd in the anterior neural ridge induces FOXG1 and helps to organize the telencephalic region.[20][21][22]
When the telencephalon's compartments have been established, FOXG1 regulates neuron specification. Progenitor cells divide asymmetrically and begin producing TBR1-expressing neurons, which become layer 1 and layer 6 neurons at the surface and the deepest regions of the cortical plate. Progenitor cells further produce layer 5 FEZF2- and BCL11B/CTIP2-expressing corticospinal projection cells, followed by RORβ-expressing sensory input cells, and then layer 2/3 SATB2 and POU3F2/BRN2-expressing callosal projection neurons. These neurons incorporate into the cortical plate through an inside-out layering pattern, where more recently generated neurons migrate past those that were born earlier, settling in the superficial region. Notably, while FOXG1 is expressed in many of the cortical progenitor cells and neurons, its function differs between subtypes and varies in a spatiotemporal manner (by progenitor cell proliferation and neuronal differentiation mechanism).[23][24][25]
The onset of FOXG1 expression in progenitor cells terminates the production of the earliest born neurons, in other words, Cajal-Retzius cells, through direct inhibition of a major transcriptional network. This network comprises, as shown by transcriptome analysis and FOXG1-ChIP sequencing, TBR1, DMRTA1, EBF2, and EBF3.[26][27][28]
The timely downregulation of FOXG1 by EGR2, a target of TGFβ, occurs in the lower intermediate zone where cells are transitioning out of the cell cycle, leading to the activation of Nr2f1/COUP-TFI, which enables layer 4 cell competence. In contrast, the absence of EGR2 target sites raises Foxg1 expression and facilitates the development of SATB2/BRN2-positive callosal projection neurons.[25] Since FOXG1 haploinsufficiency leads to agenesis of the corpus callosum in both humans and mice due to impaired upper-layer projection neuron development, these findings suggest that having two functional copies of the Foxg1 gene is essential for regulating the production of cortical neurons and the development of axons necessary for the formation of cortical circuits typical of FOXG1 disorders.[29][30][31]
Role of FOXG1 in neural plasticity
[edit]According to one study, FOXG1 is expressed in both the region where neurogenesis takes place and differentiated neurons of the adult cerebral cortex, indicating its roles in cognitive skill and neural plasticity.[32] By altering the expression levels of FOXG1 in primary cultured neurons influences the development of dendrites, with increased levels of FOXG1 leading to enhanced dendritic length and branching of neurites, partly by positive regulatory mechanisms of HES1 and CREB1 gene expression.[33]
In the adult hippocampus, a reduction in FOXG1 gene dosage results in a gradual decline in the quantity of dentate granule cells.[32] In one study, the total elimination of Foxg1 in mature neurons was achieved through the use of an inducible Camk2α-CreER along with floxed Foxg1 mice. This deletion of Foxg1 led to impairments in spatial learning and memory, evaluated through the Morris water maze, in addition to a notable decrease in performance on both the contextual and cued fear conditioning tests.[34]
Consquently, in FOXG1 syndrome, these mechanism (as mentioned above) are disrupted.[14]
Diagnosis
[edit]There are diagnostic criterias to diagnose FOXG1 syndrome:[35]
Major diagnostic criteria inlcudes:
- De novo mutation of th FOXG1 gene
- Intellectual disability
- Uneventful pre-natal period, beginning withing the first moths of life
- Secondary microcephaly
- Poor muscle tone
- Severe delayed development, Absent speech
- Alterations of EEG
Minor diagnostic includes:
- Irritable mood
- facial dysmorphism, such as: Widely spaced eyes, anteverted ears, bulging forehead.
- Squint
- Grinding of teeth
- GERD
- Constipation disorder
- Seizures
- Sleep pattern anomalies
- Dystonic disorder
- Stereotypies
- Autistic behaviours
Imaging criteria of this disorder are:
- Pachygyria
- Hypoplasia of corpus callosum
- Decreased frontal white matter volume
Treatment
[edit]This disease dosn't have a cure.[36] But some of the symptoms can be managed.[36] A multidisciplinary team is generally employed to treat the person's symptoms during their lifetime. The team might include specialist in: neurogenetics, genetic counseling, rehabilitation medicine, orthopedics, gastroenterology, physical therapy and ophthalmology.[37]
Seizures can be managed standartly by antiseizure medication (ASMs), common ASMs include clobazam, valproic acid, vigabatrin, felbamate, lamotrigine and steroids.[38] Although, there isn't universal treatment of the seizures in FOXG1 syndrome.[39]
Dyskinetic movement disorder can be managed through anti-dyskinetic medications (for example: pimozide, tetrabenazine, clonidine, etc), Although no single drug has been found to be effective for this disorder.[40]
Physical therapy is useful to make muscle tone better, it is also useful for strength improvement.[37][41]
Research
[edit]In 2024, there was a study, where postnatal mouse was injected with AAV9-FOXG1 via ICV injection, and results showed improvement in corpus callosum agenesis, also it showed recovery of the dentate gyrus morphology, increased oligodendrocyte numbers with myelin restoration.[42]
Prognosis
[edit]Information regarding the long-term course of FOXG1 syndrome is limited, and it is unclear whether lifespan is affected or not.[36] Although one of the oldest individual with that disorder is 32 years old (at the time of article publication).[43]
History
[edit]Thee first case of FOXG1 was identified by Shoichet et al in 7-year old female, who had de-novo translocation between chromosome 2 and chromosome 14, which affected FOXG1 gene.[29] Later, in 2008, Ariani et al. identified 2 female patients (First was 22 years and second one was 7 years old, at the time of article publication) with FOXG1 syndrome, although at the time of publication, it was named "Rett syndrome, congenital variant", because of similiraties between Rett syndrome and FOXG1 syndrome.[4] But in 2011, Kortüm F et al. designated the name "FOXG1 syndrome", because of the symptomatic differences between Rett syndrome and FOXG1 syndrome.[44]
See also
[edit]References
[edit]- ^ "FORKHEAD BOX G1; FOXG1". OMIM (Online Mendelian Inheritance In Man).
- ^ "FOXG1 syndrome". Orphanet.
- ^ Allou, Lila; Lambert, Laetitia; Amsallem, Daniel; Bieth, Eric; Edery, Patrick; Destrée, Anne; Rivier, François; Amor, David; Thompson, Elizabeth; Nicholl, Julian; Harbord, Michael; Nemos, Christophe; Saunier, Aline; Moustaïne, Aissa; Vigouroux, Adeline (December 2012). "14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements". European Journal of Human Genetics. 20 (12): 1216–1223. doi:10.1038/ejhg.2012.127. ISSN 1476-5438. PMC 3499785. PMID 22739344.
- ^ a b Ariani, Francesca; Hayek, Giuseppe; Rondinella, Dalila; Artuso, Rosangela; Mencarelli, Maria Antonietta; Spanhol-Rosseto, Ariele; Pollazzon, Marzia; Buoni, Sabrina; Spiga, Ottavia; Ricciardi, Sara; Meloni, Ilaria; Longo, Ilaria; Mari, Francesca; Broccoli, Vania; Zappella, Michele (2008-07-11). "FOXG1 Is Responsible for the Congenital Variant of Rett Syndrome". The American Journal of Human Genetics. 83 (1): 89–93. doi:10.1016/j.ajhg.2008.05.015. ISSN 0002-9297. PMC 2443837. PMID 18571142.
- ^ Jang, Han Na; Kim, Taeho; Jung, Ah Young; Lee, Beom Hee; Yum, Mi-Sun; Ko, Tae-Sung (2021-11-24). "Identification of FOXG1 mutations in infantile hypotonia and postnatal microcephaly". Medicine. 100 (47): e27949. doi:10.1097/MD.0000000000027949. PMC 8615421. PMID 34964776.
- ^ a b "FOXG1 syndrome: MedlinePlus Genetics". medlineplus.gov. Retrieved 2025-04-02.
- ^ "What is FOXG1 syndrome?". FOXG1 Research Foundation. Retrieved 2025-04-03.
- ^ "Orphanet: Clinical signs and symptoms". www.orpha.net. Retrieved 2025-04-02.
- ^ Mitter, Diana; Pringsheim, Milka; Kaulisch, Marc; Plümacher, Kim Sarah; Schröder, Simone; Warthemann, Rita; Abou Jamra, Rami; Baethmann, Martina; Bast, Thomas; Büttel, Hans-Martin; Cohen, Julie S.; Conover, Elizabeth; Courage, Carolina; Eger, Angelika; Fatemi, Ali (January 2018). "FOXG1 syndrome: genotype–phenotype association in 83 patients with FOXG1 variants". Genetics in Medicine. 20 (1): 98–108. doi:10.1038/gim.2017.75. ISSN 1530-0366. PMID 28661489.
- ^ Brockmann, Knut; Staudt, Martin (1993), Adam, Margaret P.; Feldman, Jerry; Mirzaa, Ghayda M.; Pagon, Roberta A. (eds.), "FOXG1 Syndrome", GeneReviews®, Seattle (WA): University of Washington, Seattle, PMID 38843374, retrieved 2025-04-02
- ^ "Definition of de novo mutation". National Cancer Institute. 2011-02-02. Retrieved 2025-04-02.
- ^ Diebold, B.; Délepine, C.; Nectoux, J.; Bahi-Buisson, N.; Parent, P.; Bienvenu, T. (2014). "Somatic mosaicism for a mutation: diagnostic implication". Clinical Genetics. 85 (6): 589–591. doi:10.1111/cge.12212. ISSN 1399-0004. PMID 24766421.
- ^ Papandreou, Apostolos; Schneider, Ruth B.; Augustine, Erika F.; Ng, Joanne; Mankad, Kshitij; Meyer, Esther; McTague, Amy; Ngoh, Adeline; Hemingway, Cheryl; Robinson, Robert; Varadkar, Sophia M.; Kinali, Maria; Salpietro, Vincenzo; O'Driscoll, Margaret C.; Basheer, S. Nigel (2016-05-10). "Delineation of the movement disorders associated with FOXG1 mutations". Neurology. 86 (19): 1794–1800. doi:10.1212/WNL.0000000000002585. PMC 4862244. PMID 27029630.
- ^ a b c Hou, Pei-Shan; hAilín, Darren Ó; Vogel, Tanja; Hanashima, Carina (2020-02-25). "Transcription and Beyond: Delineating FOXG1 Function in Cortical Development and Disorders". Frontiers in Cellular Neuroscience. 14: 35. doi:10.3389/fncel.2020.00035. ISSN 1662-5102. PMC 7052011. PMID 32158381.
- ^ https://www.cell.com/neuron/pdf/0896-6273(95)90262-7.pdf?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2F0896627395902627%3Fshowall%3Dtrue
- ^ Martynoga, Ben; Morrison, Harris; Price, David J.; Mason, John O. (2005-07-01). "Foxg1 is required for specification of ventral telencephalon and region-specific regulation of dorsal telencephalic precursor proliferation and apoptosis". Developmental Biology. 283 (1): 113–127. doi:10.1016/j.ydbio.2005.04.005. ISSN 0012-1606. PMID 15893304.
- ^ Hanashima, Carina; Shen, Lijian; Li, Suzanne C.; Lai, Eseng (2002-08-01). "Brain Factor-1 Controls the Proliferation and Differentiation of Neocortical Progenitor Cells through Independent Mechanisms". Journal of Neuroscience. 22 (15): 6526–6536. doi:10.1523/JNEUROSCI.22-15-06526.2002. ISSN 0270-6474. PMC 6758167. PMID 12151532.
- ^ Vezzali, Riccardo; Weise, Stefan Christopher; Hellbach, Nicole; Machado, Venissa; Heidrich, Stefanie; Vogel, Tanja (2016-05-21). "The FOXG1/FOXO/SMAD network balances proliferation and differentiation of cortical progenitors and activates Kcnh3 expression in mature neurons". Oncotarget. 7 (25): 37436–37455. doi:10.18632/oncotarget.9545. ISSN 1949-2553. PMC 5122323. PMID 27224923.
- ^ Seoane, Joan; Le, Hong-Van; Shen, Lijian; Anderson, Stewart A.; Massagué, Joan (2004-04-16). "Integration of Smad and Forkhead Pathways in the Control of Neuroepithelial and Glioblastoma Cell Proliferation". Cell. 117 (2): 211–223. doi:10.1016/S0092-8674(04)00298-3. ISSN 0092-8674. PMID 15084259.
- ^ Sharpe, Paul T. (1995-01-01). "Homeobox Genes and Orofacial Development". Connective Tissue Research. 32 (1–4): 17–25. doi:10.3109/03008209509013701. ISSN 0300-8207. PMID 7554914.
- ^ Suda, Yoko; Matsuo, Isao; Aizawa, Shinichi (1997-12-01). "Cooperation between Otx1 and Otx2 genes in developmental patterning of rostral brain". Mechanisms of Development. 69 (1): 125–141. doi:10.1016/S0925-4773(97)00161-5. ISSN 0925-4773. PMID 9486536.
- ^ Lagutin, Oleg V.; Zhu, Changqi C.; Kobayashi, Daisuke; Topczewski, Jacek; Shimamura, Kenji; Puelles, Luis; Russell, Helen R. C.; McKinnon, Peter J.; Solnica-Krezel, Lilianna; Oliver, Guillermo (2003-02-01). "Six3 repression of Wnt signaling in the anterior neuroectoderm is essential for vertebrate forebrain development". Genes & Development. 17 (3): 368–379. doi:10.1101/gad.1059403. ISSN 0890-9369. PMC 195989. PMID 12569128.
- ^ Hanashima, Carina; Li, Suzanne C.; Shen, Lijian; Lai, Eseng; Fishell, Gord (2004-01-02). "Foxg1 Suppresses Early Cortical Cell Fate". Science. 303 (5654): 56–59. Bibcode:2004Sci...303...56H. doi:10.1126/science.1090674. PMID 14704420.
- ^ Toma, Kenichi; Kumamoto, Takuma; Hanashima, Carina (2014-09-24). "The Timing of Upper-Layer Neurogenesis Is Conferred by Sequential Derepression and Negative Feedback from Deep-Layer Neurons". Journal of Neuroscience. 34 (39): 13259–13276. doi:10.1523/JNEUROSCI.2334-14.2014. ISSN 0270-6474. PMC 6608336. PMID 25253869.
- ^ a b Hou, Pei-Shan; Miyoshi, Goichi; Hanashima, Carina (2019-08-08). "Sensory cortex wiring requires preselection of short- and long-range projection neurons through an Egr-Foxg1-COUP-TFI network". Nature Communications. 10 (1): 3581. Bibcode:2019NatCo..10.3581H. doi:10.1038/s41467-019-11043-w. ISSN 2041-1723. PMC 6687716. PMID 31395862.
- ^ Kumamoto, Takuma; Toma, Ken-ichi; Gunadi; McKenna, William L.; Kasukawa, Takeya; Katzman, Sol; Chen, Bin; Hanashima, Carina (2013-03-28). "Foxg1 Coordinates the Switch from Nonradially to Radially Migrating Glutamatergic Subtypes in the Neocortex through Spatiotemporal Repression". Cell Reports. 3 (3): 931–945. doi:10.1016/j.celrep.2013.02.023. ISSN 2211-1247. PMC 3648982. PMID 23523356.
- ^ Hanashima, Carina; Li, Suzanne C.; Shen, Lijian; Lai, Eseng; Fishell, Gord (2004-01-02). "Foxg1 Suppresses Early Cortical Cell Fate". Science. 303 (5654): 56–59. Bibcode:2004Sci...303...56H. doi:10.1126/science.1090674. PMID 14704420.
- ^ Hanashima, Carina; Fernandes, Marie; Hebert, Jean M.; Fishell, Gord (2007-10-10). "The Role of Foxg1 and Dorsal Midline Signaling in the Generation of Cajal-Retzius Subtypes". Journal of Neuroscience. 27 (41): 11103–11111. doi:10.1523/JNEUROSCI.1066-07.2007. ISSN 0270-6474. PMC 6672859. PMID 17928452.
- ^ a b Shoichet, Sarah A.; Kunde, Stella-Amrei; Viertel, Petra; Schell-Apacik, Can; von Voss, Hubertus; Tommerup, Niels; Ropers, Hans-Hilger; Kalscheuer, Vera M. (2005-10-01). "Haploinsufficiency of novel FOXG1B variants in a patient with severe mental retardation, brain malformations and microcephaly". Human Genetics. 117 (6): 536–544. doi:10.1007/s00439-005-1310-3. ISSN 1432-1203. PMID 16133170.
- ^ Cargnin, Francesca; Kwon, Ji-Sun; Katzman, Sol; Chen, Bin; Lee, Jae W.; Lee, Soo-Kyung (2018-12-05). "FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections". Neuron. 100 (5): 1083–1096.e5. doi:10.1016/j.neuron.2018.10.016. ISSN 0896-6273. PMC 6428593. PMID 30392794.
- ^ Cargnin, Francesca; Kwon, Ji-Sun; Katzman, Sol; Chen, Bin; Lee, Jae W.; Lee, Soo-Kyung (2018-12-05). "FOXG1 Orchestrates Neocortical Organization and Cortico-Cortical Connections". Neuron. 100 (5): 1083–1096.e5. doi:10.1016/j.neuron.2018.10.016. ISSN 0896-6273. PMC 6428593. PMID 30392794.
- ^ a b Shen, Lijian; Nam, Hyung-Song; Song, Ping; Moore, Holly; Anderson, Stewart A. (2006). "FoxG1 haploinsufficiency results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits". Hippocampus. 16 (10): 875–890. doi:10.1002/hipo.20218. ISSN 1098-1063. PMID 16941454.
- ^ Chiola, Simone; Do, Mihn Duc; Centrone, Lucy; Mallamaci, Antonello (2019-03-01). "Foxg1 Overexpression in Neocortical Pyramids Stimulates Dendrite Elongation Via Hes1 and pCreb1 Upregulation". Cerebral Cortex. 29 (3): 1006–1019. doi:10.1093/cercor/bhy007. ISSN 1047-3211. PMID 29385539.
- ^ Yu, Baocong; Liu, Junhua; Su, Mingzhao; Wang, Chunlian; Chen, Huanxin; Zhao, Chunjie (2019-06-28). "Disruption of Foxg1 impairs neural plasticity leading to social and cognitive behavioral defects". Molecular Brain. 12 (1): 63. doi:10.1186/s13041-019-0484-x. ISSN 1756-6606. PMC 6599246. PMID 31253171.
- ^ "Expanding FOXG1 syndrome phenotype". www.elsevier.es. Retrieved 2025-04-02.
- ^ a b c Brockmann, Knut; Staudt, Martin (1993), Adam, Margaret P.; Feldman, Jerry; Mirzaa, Ghayda M.; Pagon, Roberta A. (eds.), "FOXG1 Syndrome", GeneReviews®, Seattle (WA): University of Washington, Seattle, PMID 38843374, retrieved 2025-04-03
- ^ a b Philadelphia, The Children's Hospital of. "FOXG1 syndrome | Children's Hospital of Philadelphia". www.chop.edu. Retrieved 2025-04-03.
- ^ "UpToDate". www.uptodate.com. Retrieved 2025-04-03.
- ^ Brimble, Elise; Reyes, Kathryn G.; Kuhathaas, Kopika; Devinsky, Orrin; Ruzhnikov, Maura R. Z.; Ortiz-Gonzalez, Xilma R.; Scheffer, Ingrid; Bahi-Buisson, Nadia; Olson, Heather; the FOXG1 Research Foundation (2023-06-12). "Expanding genotype–phenotype correlations in FOXG1 syndrome: results from a patient registry". Orphanet Journal of Rare Diseases. 18 (1): 149. doi:10.1186/s13023-023-02745-y. ISSN 1750-1172. PMC 10262363. PMID 37308910.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ Cellini, Elena; Vignoli, Aglaia; Pisano, Tiziana; Falchi, Melania; Molinaro, Anna; Accorsi, Patrizia; Bontacchio, Alessia; Pinelli, Lorenzo; Giordano, Lucio; Guerrini, Renzo; On Behalf of the FOXG1 Syndrome Study Group (2016). "The hyperkinetic movement disorder of 1-related epileptic–dyskinetic encephalopathy". Developmental Medicine & Child Neurology. 58 (1): 93–97. doi:10.1111/dmcn.12894. ISSN 1469-8749. PMID 26344814 – via Wiley Online Library.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ "Physical Therapy (Physiotherapy)". Cleveland clinic.
- ^ Jeon, Shin; Park, Jaein; Likhite, Shibi; Moon, Ji Hwan; Shin, Dongjun; Li, Liwen; Meyer, Kathrin C.; Lee, Jae W.; Lee, Soo-Kyung (2024-09-12). "The postnatal injection of AAV9-FOXG1 rescues corpus callosum agenesis and other brain deficits in the mouse model of FOXG1 syndrome". Molecular Therapy - Methods & Clinical Development. 32 (3): 101275. doi:10.1016/j.omtm.2024.101275. ISSN 2329-0501. PMC 11253142. PMID 39022742.
- ^ Mitter, Diana; Pringsheim, Milka; Kaulisch, Marc; Plümacher, Kim Sarah; Schröder, Simone; Warthemann, Rita; Jamra, Rami Abou; Baethmann, Martina; Bast, Thomas; Büttel, Hans-Martin; Cohen, Julie S.; Conover, Elizabeth; Courage, Carolina; Eger, Angelika; Fatemi, Ali (2018-01-01). "FOXG1 syndrome: genotype–phenotype association in 83 patients with FOXG1 variants". Genetics in Medicine. 20 (1): 98–108. doi:10.1038/gim.2017.75. ISSN 1098-3600. PMID 28661489.
- ^ Kortüm, Fanny; Das, Soma; Flindt, Max; Morris-Rosendahl, Deborah J.; Stefanova, Irina; Goldstein, Amy; Horn, Denise; Klopocki, Eva; Kluger, Gerhard; Martin, Peter; Rauch, Anita; Roumer, Agathe; Saitta, Sulagna; Walsh, Laurence E.; Wieczorek, Dagmar (2011-06-01). "The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis". Journal of Medical Genetics. 48 (6): 396–406. doi:10.1136/jmg.2010.087528. ISSN 0022-2593. PMC 5522617. PMID 21441262.